
%% --------MATLAB Final Project - Engine Type Clustering --------%%1
% By: Ori Algave 2
% 3
% This script loads aircraft performance data, cleans it, converts4
% ft/in columns to numeric feet, standardizes engine labels, 5
% partitions data into Test Set 1, Test Set 2, and Training Set,6
% normalizes features, applies weights, runs K-means clustering,7
% maps clusters to engine types, and evaluates results.8
%---%9
clc; clear; close all; % Clear command window, workspace variables, and open figures10
%% ---11
% STEP 1 - Load the raw data12
% ---13
filename = 'bluebook.csv'; % Name of input CSV file containing aircraft data14
rawData = readtable(filename, 'VariableNamingRule','preserve'); % Read CSV as a table, then 15
preserve original column headers
cleanedData = rawData; % Make a working copy for cleaning so rawData stays unchanged16

17
%% ---18
% STEP 2 - Remove rows with too many missing values (5+)19
% ---20
keepRow = true(height(cleanedData),1); % Logical vector indicating which rows to keep (start 21
with all true)
for ii = 1:height(cleanedData) % Loop through each row of entire table22
 numMissing = sum(ismissing(cleanedData(ii,:))); % Count missing entries in current row 23
using ismissing
 if numMissing > 5 % If more than 5 cells are missing in this row 24
 keepRow(ii) = false; % Mark the current row as false so it will be removed25
 end26
end27
cleanedData = cleanedData(keepRow,:); % Keep only rows marked true, drop rows with too many NaNs28

29
%% ---30
% STEP 3 - Remove columns with >10% missing31
% ---32
numRows = height(cleanedData); % Store number of remaining rows after row cleaning33
keepCol = true(1, width(cleanedData)); % Logical vector for keeping or dropping columns34

35
for jj = 1:width(cleanedData) % Loop through each column of the table 36
 numMissingCol = sum(ismissing(cleanedData(:,jj))); % Count how many entries in this column 37
are missing
 if numMissingCol > 0.10*numRows % If more than 10% of entries are missing38
 keepCol(jj) = false; % Mark this column as false to be removed39
 end40
end41

42
cleanedData = cleanedData(:, keepCol); % Keep only columns with acceptable levels of missing 43
data

44
% Delete column with 'Height' because it has months and isn't useful for data45
colsToDelete = ["Height ft/in"];46
for ii = colsToDelete47
 if ismember(ii, cleanedData.Properties.VariableNames)48
 cleanedData.(ii) = [];49
 end50
end51

52
%% ---53
% STEP 4 - Standardize Engine Type Labels54
% ---55

engineTypeRaw = cleanedData.("Engine Type"); %Extract original engine type column from cleaned 56
table
engineStr = string(engineTypeRaw); % Convert to string array for easier text operations57
engineStr = strtrim(lower(engineStr)); % Convert to lowercase and trim surrounding whitespace58

59
engineTypeLabels = strings(size(engineStr)); % Preallocate array for standardized engine labels60

61
for ii = 1:numel(engineStr) % Loop through each original engine type string62
 et = engineStr(ii); % Shorter variable name for current engine string63
 if contains(et,"jet") && ~contains(et,"prop") % If contains 'jet' but not 'prop', treat it 64
as pure jet
 engineTypeLabels(ii) = "Jet"; % Standardized label: Jet65
 elseif contains(et,"prop") % If contains 'prop', treat as a turboprop / propjet66
 engineTypeLabels(ii) = "Propjet"; % Standardized label Propjet67
 elseif contains(et,"pist") %If matches 'pist' (piston variants / misspellings)68
 engineTypeLabels(ii) = "Piston"; % Standardized label: Piston69
 else70
 engineTypeLabels(ii) = "UNKNOWN"; % Anything not matching the above categorizations is 71
unknown, mark as UNKNOWN so it could be removed later
 end72
end73

74
cleanedData.EngineTypeStandardized = engineTypeLabels; % Attach standardized engine labels as a 75
column in table

76
%% ---77
% STEP 5 - Remove UNKNOWN engine types before clustering78
% ---79
unknownMask = (engineTypeLabels == "UNKNOWN"); % Logical mask where standardized label equals 80
UNKNOWN
cleanedData(unknownMask,:) = []; % Remove UNKNOWN rows from cleaned data81
engineTypeLabels(unknownMask) = []; % Remove corresponding labels to keep alignment82

83
%% ---84
% STEP 6 - Convert ft/in columns 85
% ---86

87
% ---------- LENGTH ----------88
if ismember("Length ft/in", cleanedData.Properties.VariableNames) % Check if Length ft/in 89
string column exists
 rawLength = cleanedData.("Length ft/in"); % Original name has a space, so set it equal to a 90
variable
 lengthFeet = zeros(height(cleanedData), 1); % Preallocate numeric vector for length in feet91
 92
 for ii = 1:height(cleanedData) % Loop through each row to comvert length 93
 value = rawLength{ii}; % Extract raw ft/in string from table cell94
 95
 if contains(value, "/") % If string has '/', assume its 'feet / inches' format96
 parts = split(value, "/"); % split function splits the string into substring parts 97
around '/'
 98
 if numel(parts) == 2 % If there are exactly 2 parts, feet and inches99
 feet = str2double(parts{1}); % str2double converts feet substring to numeric 100
value
 inches = str2double(parts{2}); % Convert inches substring to numeric value 101
 else102
 feet = str2double(parts{1}); % If more unusual format but still uses '/' then 103
first part is feet
 inches = 0; % Defaults inches to zero 104
 end105
 else106

 feet = str2double(value); % If there is no '/', treat entire value as feet only 107
and convert full string directly to numeric feet
 inches = 0; % No inches in this case 108
 end109
 110
 totalInches = feet*12 + inches; % Convert combination of feet and inches into total 111
inches
 lengthFeet(ii) = totalInches / 12; % Convert inches back to feet 112
 end113
 114
 cleanedData.LengthFeet = lengthFeet; % Store numeric length in new column LengthFeet115
 cleanedData.("Length ft/in") = []; % Remove original string based length column 116
end117

118
119

% ---------- WINGSPAN ----------120
if ismember("Wing span ft/in", cleanedData.Properties.VariableNames) % Check if Wing span ft/in 121
string column exists
 rawWing = cleanedData.("Wing span ft/in"); % Original name has a space, so set it equal to 122
a variable
 wingspanFeet = zeros(height(cleanedData), 1); % Preallocate numeric vector for wingspan in 123
feet
 124
 for ii = 1:height(cleanedData) % Loop through each row for wingspan conversion 125
 value = rawWing{ii}; % Extract raw wingspan ft/in string 126
 127
 if contains(value, "/") % If string has '/', assume its 'feet / inches' format128
 parts = split(value, "/"); % split function splits the string into substring parts 129
arounf '/'
 130
 if numel(parts) == 2 % If there are exactly 2 parts, feet and inches131
 feet = str2double(parts{1}); % str2double converts feet substring to numeric 132
value
 inches = str2double(parts{2}); % Convert inches substring to numeric value 133
 else134
 feet = str2double(parts{1}); % If more unusual format but still uses '/' then 135
first part is feet
 inches = 0; % Defaults inches to zero 136
 end137
 else138
 feet = str2double(value); % If there is no '/', treat entire value as feet only 139
and convert full string directly to numeric feet
 inches = 0; % No inches in this case 140
 end141
 142
 totalInches = feet*12 + inches; % Convert combination of feet and inches into total 143
inches
 wingspanFeet(ii) = totalInches / 12; % Convert inches back to feet 144
 end145
 146
 cleanedData.WingSpanFeet = wingspanFeet; % Store numeric wingspan measures147
 cleanedData.("Wing span ft/in") = []; % Remove original wingspan string column148
end149

150
%% ---151
% STEP 7 - Build numeric matrix and impute missing values152
% ---153
numericData = cleanedData(:, vartype("numeric")); % Select only numeric columns using 154
vartype("numeric")
X = table2array(numericData); % Convert numeric table to matrix for faster numeric operations155

156

for col = 1:size(X,2) % Loop over each feature column in X157
 colData = X(:,col); % Extract one column as a vector158
 mu_val = mean(colData,'omitnan'); % Compute mean while ignoring NaNs (omitnan ignores 159
missing data)
 colData(isnan(colData)) = mu_val; % Replace NaNs in this column with the column mean 160
 X(:,col) = colData; % Put cleaned column back into X161
end162

163
disp("Remaining NaN count in X:"); % Print label indicating NaN count check164
disp(sum(isnan(X),'all')); % Count all NaNs in X, this value should be zero after imputation165

166
% Overwrite numeric columns in cleanedData with fully imputed values (Extract names of numeric 167
variables to update table columns)
numericVars = numericData.Properties.VariableNames; % Get variable names so they could 168
overwrite each column in loop
for col = 1:length(numericVars) % Loop across each numeric variable column name169
 cleanedData.(numericVars{col}) = X(:,col); % Replace original column in cleanedData with 170
fully imputed numeric column
end171

172
%% ---173
% STEP 8 - Sectioning the data set into test and training sets174
%---175

176
% Calculate 10% of total dataset size177
totalRows = height(cleanedData); % Get the total number of rows in the cleaned dataset178
numToPick = round(0.10 * totalRows); % Get the number of rows that make up 10% of the total 179
data to be extracted

180
%---181
% Create the first 10% test set182
%---183
test1Indices = []; % Initialize an empty array to store indices for test set 1184
while length(test1Indices) < numToPick % Loop until there are enough unique indices that makeup 185
less that 10%
 randomIndex = randi(totalRows); % Randomly generate a random integer from 1 to total rows 186
 if ~ismember(randomIndex, test1Indices) % Check if the current index has not been chosen 187
already, ismember checks if its a part of the chosen indices
 test1Indices(end+1) = randomIndex; % If it's a new index then add after the last index 188
in the list of selected indices
 end189
end190

191
%---192
% Create the second 10% test set 193
%---194
test2Indices = []; % Initialize an empty array to store indices for test set 2195
while length(test2Indices) < numToPick % Loop until there are enough unique indices that makeup 196
less that 10%
 randomIndex = randi(totalRows); % Randomly generate a random integer from 1 to total rows 197
 if ~ismember(randomIndex, [test1Indices, test2Indices]) % Check if the current index has 198
not been chosen already from set 1 or for set 2, ismember checks if its a part of the chosen
indices
 test2Indices(end+1) = randomIndex; % If it's a new index then add after the last index 199
in the list of selected indices
 end200
end201

202
%---203
% Extract test sets using selected indices204
%---205

testSet1 = cleanedData(test1Indices, :); % Use the selected indices to extract the first test 206
set from the cleaned data based off of the list of random indices
testSet2 = cleanedData(test2Indices, :); % Use the selected indices to extract the second test 207
set from the cleaned data based off of the list of random indices

208
% Extract engine labels for each test set209
testLabels1 = engineTypeLabels(test1Indices); % Engine labels that match test set 1210
testLabels2 = engineTypeLabels(test2Indices); % Engine labels that match test set 2211

212
%---213
% Build the training set (remaining 80%)214
%---215
remainingIndices = setdiff(1:totalRows, [test1Indices test2Indices]); % Find all indices not 216
selected into test sets
trainingSet = cleanedData(remainingIndices, :); % Use remaining indices to create the training 217
set
trainingLabels = engineTypeLabels(remainingIndices); % Use same remaining indices to extract 218
training labels

219
%---220
% Save all 3 sets into CSV files221
%---222
writetable(testSet1, 'test_set_1.csv'); % Writes the first 10% of indices into its own csv for 223
test 1
writetable(table(testLabels1), 'test_set_1_labels.csv'); % Writes the matching engine labels 224
for test 1

225
writetable(testSet2, 'test_set_2.csv'); % Writes the second 10% of indices into its own csv for 226
test 2
writetable(table(testLabels2), 'test_set_2_labels.csv'); % Writes the matching engine labels 227
for test 2

228
writetable(trainingSet, 'training_set.csv'); % Writes the remaining 80% of clean data into its 229
own csv for training
writetable(table(trainingLabels), 'training_labels.csv'); % Writes the matching engine labels 230
for training

231
%---232
% Update cleanedData and engineTypeLabels to training data only233
%---234
cleanedData = trainingSet; % Replace cleanedData with training set for future steps 235
engineTypeLabels = trainingLabels; % Replace engine labels with training labels for clustering236

237
% Rebuild numeric matrix X for the training pipeline238
numericData = cleanedData(:, vartype("numeric")); % Extract numeric columns for model training239
X = table2array(numericData); % Convert numeric table into matrix for normalization and 240
clustering

241
%% ---242
% STEP 9 - Z-score normalization 243
% Z-score = (x - mu) / sigma244
% ---245

246
% Numeric feature names (for saving parameters later)247
varNames = numericData.Properties.VariableNames; % This keeps track of which column corresponds 248
to which feature which allows for correct normalization

249
% Preallocate mean and std arrays (one per column of X)250
numFeatures = size(X, 2); % Determine how many numeric features there are in total 251
mu = zeros(1, numFeatures); % Stores mean for each feature column252

sigma = ones(1, numFeatures); % Stires standard deviation, which is initialized to all 1 to 253
avoid division problems

254
% Loop over each numeric feature/column255
for ii = 1:numFeatures % Loop through every numeric feature and calculate z-score parameters256
 col = X(:, ii); % Extract the full column for the current feature257
 mu(ii) = mean(col, 'omitnan'); % Calculate the mean and ignore any missing values, the 258
mean centers the distribution
 sigma(ii) = std(col, 'omitnan'); % Calculate the standard deviation and ignore any 259
missing values, the standard deviation scales the distribution

260
 % Avoid divide-by-zero for constant columns261
 if sigma(ii) == 0262
 sigma(ii) = 1; % Prevents division by zero and preserves the feature shape263
 end264

265
 % Perform z-score normalization and overwrite this column with its z-scored version266
 X(:, ii) = (col - mu(ii)) / sigma(ii); % This transformation makes all feautres comparable 267
in scale, which prevents variables with a larger magnitude from having a larger influence on
clustering
end268

269
Xnorm = X; % Final normalized feature matrix stored separately 270

271
% Save normalization parameters for future use on test sets272
save('normParams_loop.mat', 'mu', 'sigma', 'varNames'); % Save mu and sigma so test sets could 273
use identical scaling

274
%% ---275
% STEP 10 - Weight Assigning 276
% ---277
numFeatures = size(Xnorm,2); % Count how many normalized features exist278
weights = ones(1,numFeatures); % Initialize all feature weights to 1 to have a neutral 279
influence
numericNames = numericData.Properties.VariableNames; % Retreieve feature names used to apply 280
targeted weights

281
for ii = 1:numFeatures % Loop through all of the features 282
 lname = lower(numericNames{ii}); % Convert all feature names to lowercase for reliable 283
substring matching
 if contains(lname,"rate") && contains(lname,"climb") % Rate of climb strongly separates 284
turbine vs piston aircraft
 weights(ii) = 9.0;285
 elseif contains(lname,"service") && contains(lname,"ceiling") % Service ceiling is engine 286
power dependant, so jets highly dominate this region
 weights(ii) = 4.5;287
 elseif contains(lname,"max") && contains(lname,"speed") % Max speed cleanly separates jets 288
from others, propjets fall in between here
 weights(ii) = 2.5;289
 elseif contains(lname,"cruise") || contains(lname,"rcmnd") % Cruise speed correlates with 290
propjet vs piston crossover
 weights(ii) = 4.5;291
 elseif contains(lname,"takeoff") % Takeoff distance reflects the thrust to weight and 292
engine response
 weights(ii) = 4.0;293
 elseif contains(lname,"landing") % Landing distance is somewhat correlated but is largely 294
influences by the drag and flaps used in landing
 weights(ii) = 3.5;295
 elseif contains(lname,"weight") % Gross/ empty weight is a reflection of aircraft category 296
and engine capability
 weights(ii) = 4.5; 297

 elseif contains(lname,"stall") % Stall speed provides some insight into engine categories 298
but is not so decisive
 weights(ii) = 1.5;299
 elseif contains(lname,"fuel") % Fuel capacity varies widely but isn't very string at 300
categorizing engine types
 weights(ii) = 1.5;301
 elseif contains(lname,"range") % Range is influence by a large magnitude of factors, engine 302
type itself isn't very predictive alone
 weights(ii) = 1.0;303
 elseif contains(lname,"length") || contains(lname,"height") || contains(lname,"wing") % The 304
dimensions of the aircraft have some dependancy on engine type
 weights(ii) = 0.5; 305
 else % Any remaining features that havent been accounted for get a neutral default weight306
 weights(ii) = 1.0;307
 end308
end309

310
Xweighted = Xnorm .* weights; % Apply the weights by scaling each feature column 311

312
%% ---313
% STEP 11 - K-means clustering314
% ---315
k = 3; % 3 clusters for the 3 engine types: Jet, Piston, Propjet 316
rng(1); % Fixing random seed ensures reproducible clustering results and doesn't rerandomize 317
centroids
[idx, C] = kmeans(Xweighted, k,... % Perform k-means on the weighted, normalized feature set 318
 'Replicates', 25,... % Run the algorithm 25 times to avoid a bad local minima 319
 'MaxIter', 1000,... % Allow up to 1000 iterations for convergence per replicate320
 'Display','final'); % MATLAB prints summary including best within cluster sum of squared 321
errors
%% ---322
% STEP 12 - Majority Voting Cluster Assignments323
% ---324
engineTypes = ["Jet","Piston","Propjet"]; % Target categories for classifications325
clusterToType = strings(k,1); % Preallocate mapping array 326

327
for ii = 1:k328
 members = engineTypeLabels(idx==ii); % Extract engine types that appear inside the given 329
cluster
 if isempty(members) % If a cluster ended up empty330
 clusterToType(ii) = "UNKNOWN"; % Label it as UNKNOWN331
 continue;332
 end333
 numJet = sum(members=="Jet"); % Count the number of each jet engine class in a given 334
cluster
 numPiston = sum(members=="Piston"); % Count the number of each piston engine class in a 335
given cluster
 numPropjet = sum(members=="Propjet"); % Count the number of each propjet engine class in a 336
given cluster
 % This applies a majority voting rule for classifications of clusters 337
 if numPropjet >= max(numJet,numPiston)*0.63 % If propjets are atleast 63% of the dominant 338
class, classify as propjet
 clusterToType(ii) = "Propjet"; % Propjets have been seemingly the most difficult to 339
separate, so its boosted to improve the mapping of it later on
 elseif numJet >= numPiston % If jets dominate more than pistons340
 clusterToType(ii) = "Jet"; % Assign the cluster type as jet 341
 else342
 clusterToType(ii) = "Piston"; % Otherwise, assign the cluster as piston343
 end344
end345

346

disp("Cluster Labels:");347
disp(clusterToType); % This displays the reuslting cluster classification labels 348

349
%% ---350
% STEP 13 - Confusion Matrix 351
% ---352
predictedTrain = clusterToType(idx); % Convert cluster numbers back into engine type predictions353

354
% Convert to categorical355
engineTypes = ["Jet","Piston","Propjet"]; % Define category order for a consistent result356
orderCats = categorical(engineTypes, engineTypes); % Force categorical ordering in confusion 357
matrix

358
trueCat = categorical(engineTypeLabels, engineTypes); % Convert true labels to categorical type 359
predCat = categorical(predictedTrain, engineTypes); % Convert predicted labels into the same 360
categorical type

361
confMat = confusionmat(trueCat, predCat, 'Order', orderCats); % Compute the confusion matrix 362
using consistent labeling order

363
confTable = array2table(confMat,'VariableNames', cellstr(engineTypes),'RowNames', 364
cellstr(engineTypes)); % Convert the confusion matrix to a readable table

365
disp("Training Confusion Matrix:");366
disp(confTable); % Print the full confusion matrix 367

368
acc = sum(predCat == trueCat) / numel(trueCat); % Compute the fraction of correctly predicted 369
aircraft (predicted / true)
fprintf("Training Accuracy: %.2f%%\n", acc * 100); % Display the accuracy of predicted / true370

371
%% ---372
% STEP 14 - Visualization (Max Speed vs Climb Rate vs Gross Weight)373
% ---374
maxSpeed = cleanedData.("Max speed Knots"); % Use max speed as x-axis feature for visualization375
roc = cleanedData.("All eng rate of climb"); % Use rate of climb as y-axis feature376
gross = cleanedData.("Gross weight lbs"); % Use gross weight as z-axis feature 377
clusterCat = categorical(idx); % Convert the cluster IDs into categorical values for coloring 378

379
figure; hold on; grid on; % Start a new scatter plot with the grid enabled for visual clarity 380
markers = {'o','s','^'}; % Marker shapes corresponding to each true engine type 381

382
for ii = 1:numel(engineTypes)383
 mask = (trueCat == engineTypes(ii)); % Filter the rows belonging to the true class ii384
 scatter3(maxSpeed(mask), roc(mask), gross(mask), ... % Scatter plot showing cluster 385
coloring but true shaped markers
 40, clusterCat(mask), markers{ii}, 'filled', 'MarkerEdgeColor', 'k', 'LineWidth', 0.4); % 386
Filled markers with an outer edge to improve visibility on the clustered and overlapped markers
end387

388
xlabel("Max Speed (knots)"); % Label x-axis for interpretabilty389
ylabel("Rate of Climb (all engines)"); % Label y-axis 390
zlabel("Gross Weight (lbs)"); % Label z-axis391
title("K-means Cluster Visualization"); % Plot title describing the purpose of the plot392
legend("Jet","Piston","Propjet"); % Includes a legend representing true engine types via the 393
marker shapes
colormap(lines); % Use MATLAB's built in parula colormap for good color contrast394
view(3); % 3D perspective in MATLAB395
rotate3d on; % Allows for drag and rotate of plot 396
hold off; % Finish the plot 397
% This type of visualization of the clustering makes it clear to see where there are 398
misclassifications

% The color shows what k-means thinks the plane is (predicted)399
% The marker shape shows what the plane really is 400

401

