VoOoNOUVTEA, WN PR

PR R PR
UhWNRO®

16
17
18
19
20
21

22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55

% —------- MATLAB Final Project - Engine Type Clustering -------- %%
By: Ori Algave

This script loads aircraft performance data, cleans it, converts
ft/in columns to numeric feet, standardizes engine labels,
partitions data into Test Set 1, Test Set 2, and Training Set,
normalizes features, applies weights, runs K-means clustering,
maps clusters to engine types, and evaluates results.

3% 3% 3R 3R R R 3® 3 ¥

clc; clear; close all; % Clear command window, workspace variables, and open figures
Y e e e e e e e T
% STEP 1 - Load the raw data

filename = 'bluebook.csv'; % Name of input CSV file containing aircraft data

rawData = readtable(filename, 'VariableNamingRule', 'preserve'); % Read CSV as a table, then
preserve original column headers

cleanedData = rawData; % Make a working copy for cleaning so rawData stays unchanged

A e T e T e T
% STEP 2 - Remove rows with too many missing values (5+)

keepRow = true(height(cleanedData),1); % Logical vector indicating which rows to keep (start
with all true)
for ii = 1:height(cleanedData) % Loop through each row of entire table

numMissing = sum(ismissing(cleanedData(ii,:))); % Count missing entries in current row
using ismissing

if numMissing > 5 % If more than 5 cells are missing in this row
keepRow(ii) = false; % Mark the current row as false so it will be removed
end
end
cleanedData = cleanedData(keepRow,:); % Keep only rows marked true, drop rows with too many NaNs

Y e e e T
% STEP 3 - Remove columns with >10% missing

numRows = height(cleanedData); % Store number of remaining rows after row cleaning
keepCol = true(l, width(cleanedData)); % Logical vector for keeping or dropping columns

for jj = 1l:width(cleanedData) % Loop through each column of the table
numMissingCol = sum(ismissing(cleanedData(:,jj))); % Count how many entries in this column
are missing
if numMissingCol > ©.10*numRows % If more than 10% of entries are missing
keepCol(jj) = false; % Mark this column as false to be removed
end
end

cleanedData = cleanedData(:, keepCol); % Keep only columns with acceptable levels of missing
data

% Delete column with 'Height' because it has months and isn't useful for data
colsToDelete = ["Height ft/in"];
for ii = colsToDelete

if ismember(ii, cleanedData.Properties.VariableNames)
cleanedData.(ii) = [];
end
end
Y R e T
% STEP 4 - Standardize Engine Type Labels

56

57
58
59
60
61
62
63
64

65
66
67
68
69
70
71

72
73
74
75

76
77
78
79
80

81
82
83
84
85
86
87
88
89

90

91
92
93
94
95
96
97

98
99
100

lo1
102
103

104
105
106

engineTypeRaw = cleanedData.("Engine Type"); %Extract original engine type column from cleaned
table

engineStr = string(engineTypeRaw); % Convert to string array for easier text operations
engineStr = strtrim(lower(engineStr)); % Convert to lowercase and trim surrounding whitespace
engineTypelabels = strings(size(engineStr)); % Preallocate array for standardized engine labels

for ii = 1:numel(engineStr) % Loop through each original engine type string

et = engineStr(ii); % Shorter variable name for current engine string

if contains(et,"jet") && ~contains(et,"prop") % If contains 'jet' but not 'prop', treat it
as pure jet

engineTypelLabels(ii) = "Jet"; % Standardized label: Jet
elseif contains(et,"prop") % If contains 'prop', treat as a turboprop / propjet
engineTypelLabels(ii) = "Propjet"; % Standardized label Propjet
elseif contains(et,"pist") %If matches 'pist' (piston variants / misspellings)
engineTypelLabels(ii) = "Piston"; % Standardized label: Piston
else
engineTypelLabels(ii) = "UNKNOWN"; % Anything not matching the above categorizations is
unknown, mark as UNKNOWN so it could be removed later
end
end
cleanedData.EngineTypeStandardized = engineTypelabels; % Attach standardized engine labels as a

column in table

Y e e L E T e
% STEP 5 - Remove UNKNOWN engine types before clustering

O = m e e e e oo
unknownMask = (engineTypelLabels == "UNKNOWN"); % Logical mask where standardized label equals
UNKNOWN

cleanedData(unknownMask,:) = []; % Remove UNKNOWN rows from cleaned data

engineTypelabels(unknownMask) = []; % Remove corresponding labels to keep alignment

A e e T T
% STEP 6 - Convert ft/in columns

% ---------- LENGTH ----------
if ismember("Length ft/in", cleanedData.Properties.VariableNames) % Check if Length ft/in
string column exists

rawLength = cleanedData.("Length ft/in"); % Original name has a space, so set it equal to a
variable

lengthFeet = zeros(height(cleanedData), 1); % Preallocate numeric vector for length in feet
for ii = 1:height(cleanedData) % Loop through each row to comvert length
value = rawLength{ii}; % Extract raw ft/in string from table cell
if contains(value, "/") % If string has '/', assume its 'feet / inches' format
parts = split(value, "/"); % split function splits the string into substring parts
around '/
if numel(parts) == 2 % If there are exactly 2 parts, feet and inches
feet = str2double(parts{1}); % str2double converts feet substring to numeric
value
inches = str2double(parts{2}); % Convert inches substring to numeric value
else
feet = str2double(parts{1}); % If more unusual format but still uses '/' then
first part is feet
inches = @; % Defaults inches to zero
end
else

107

108
109
110
111

112
113
114
115
116
117
118
119
120
121

122

123

124
125
126
127
128
129

130
131
132

133
134
135

136
137
138
139

140
141
142
143

144
145
146
147
148
149
150
151
152
153
154

155
156

feet = str2double(value); % If there is no '/', treat entire value as feet only
and convert full string directly to numeric feet
inches = @; % No inches in this case

end
totalInches = feet*12 + inches; % Convert combination of feet and inches into total
inches
lengthFeet(ii) = totalInches / 12; % Convert inches back to feet
end

cleanedData.LengthFeet = lengthFeet; % Store numeric length in new column LengthFeet
cleanedData. ("Length ft/in") = []; % Remove original string based length column
end

% ---------- WINGSPAN ----------
if ismember("Wing span ft/in", cleanedData.Properties.VariableNames) % Check if Wing span ft/in
string column exists

rawWing = cleanedData.("Wing span ft/in"); % Original name has a space, so set it equal to
a variable

wingspanFeet = zeros(height(cleanedData), 1); % Preallocate numeric vector for wingspan in
feet

for ii = 1:height(cleanedData) % Loop through each row for wingspan conversion
value = rawWing{ii}; % Extract raw wingspan ft/in string

if contains(value, "/") % If string has '/', assume its 'feet / inches' format
parts = split(value, "/"); % split function splits the string into substring parts

arounf '/'
if numel(parts) == 2 % If there are exactly 2 parts, feet and inches
feet = str2double(parts{1}); % str2double converts feet substring to numeric
value
inches = str2double(parts{2}); % Convert inches substring to numeric value
else
feet = str2double(parts{1}); % If more unusual format but still uses '/' then

first part is feet
inches = @; % Defaults inches to zero
end
else
feet = str2double(value); % If there is no '/', treat entire value as feet only
and convert full string directly to numeric feet
inches = @; % No inches in this case

end
totalInches = feet*12 + inches; % Convert combination of feet and inches into total
inches
wingspanFeet(ii) = totallInches / 12; % Convert inches back to feet
end

cleanedData.WingSpanFeet = wingspanFeet; % Store numeric wingspan measures
cleanedData. ("Wing span ft/in") = []; % Remove original wingspan string column
end

F A e e e T e
% STEP 7 - Build numeric matrix and impute missing values

numericData = cleanedData(:, vartype("numeric")); % Select only numeric columns using
vartype("numeric"
X = table2array(numericData); % Convert numeric table to matrix for faster numeric operations

157
158
159

160
161
162
163
164
165
166
167

168

169
170

171
172
173
174
175
176
177
178
179

180
181
182
183
184
185

186
187

188

189
190
191
192
193
194
195
196

197
198

199

200
201
202
203
204
205

for col = 1:size(X,2) % Loop over each feature column in X
colData = X(:,col); % Extract one column as a vector
mu_val = mean(colData, 'omitnan'); % Compute mean while ignoring NaNs (omitnan ignores
missing data)
colData(isnan(colData)) = mu_val; % Replace NaNs in this column with the column mean
X(:,col) = colData; % Put cleaned column back into X
end

disp("Remaining NaN count in X:"); % Print label indicating NaN count check
disp(sum(isnan(X),'all')); % Count all NaNs in X, this value should be zero after imputation

% Overwrite numeric columns in cleanedData with fully imputed values (Extract names of numeric
variables to update table columns)
numericVars = numericData.Properties.VariableNames; % Get variable names so they could
overwrite each column in loop
for col = 1:length(numericVars) % Loop across each numeric variable column name

cleanedData. (numericVars{col}) = X(:,col); % Replace original column in cleanedData with
fully imputed numeric column
end

Y e e L E T e
% STEP 8 - Sectioning the data set into test and training sets

% Calculate 10% of total dataset size

totalRows = height(cleanedData); % Get the total number of rows in the cleaned dataset
numToPick = round(@.10 * totalRows); % Get the number of rows that make up 10% of the total
data to be extracted

testlIndices = []; % Initialize an empty array to store indices for test set 1
while length(testlIndices) < numToPick % Loop until there are enough unique indices that makeup
less that 10%

randomIndex = randi(totalRows); % Randomly generate a random integer from 1 to total rows

if ~ismember(randomIndex, testlIndices) % Check if the current index has not been chosen
already, ismember checks if its a part of the chosen indices

testlIndices(end+1l) = randomIndex; % If it's a new index then add after the last index

in the list of selected indices

end
end

test2Indices = []; % Initialize an empty array to store indices for test set 2
while length(test2Indices) < numToPick % Loop until there are enough unique indices that makeup
less that 10%

randomIndex = randi(totalRows); % Randomly generate a random integer from 1 to total rows

if ~ismember(randomIndex, [testlIndices, test2Indices]) % Check if the current index has
not been chosen already from set 1 or for set 2, ismember checks if its a part of the chosen
indices

test2Indices(end+1l) = randomIndex; % If it's a new index then add after the last index

in the list of selected indices

end
end

206

207

208
209
210
211
212
213
214
215
216

217

218

219
220
221
222
223

224

225
226

227

228
229

230

231
232
233
234
235
236
237
238
239
240

241
242
243
244
245
246
247
248

249
250
251
252

testSetl = cleanedData(testlIndices, :); % Use the selected indices to extract the first test
set from the cleaned data based off of the list of random indices
testSet2 = cleanedData(test2Indices, :); % Use the selected indices to extract the second test
set from the cleaned data based off of the list of random indices

% Extract engine labels for each test set
testLabelsl = engineTypelabels(testlIndices); % Engine labels that match test set 1
testLabels2 = engineTypelabels(test2Indices); % Engine labels that match test set 2

remainingIndices = setdiff(1l:totalRows, [testlIndices test2Indices]); % Find all indices not
selected into test sets

trainingSet = cleanedData(remainingIndices, :); % Use remaining indices to create the training
set

traininglabels = engineTypelLabels(remainingIndices); % Use same remaining indices to extract
training labels

writetable(testSetl, 'test_set 1.csv'); % Writes the first 10% of indices into its own csv for
test 1

writetable(table(testLabelsl), 'test set 1 labels.csv'); % Writes the matching engine labels
for test 1

writetable(testSet2, 'test_set 2.csv'); % Writes the second 10% of indices into its own csv for
test 2

writetable(table(testLabels2), 'test set 2 labels.csv'); % Writes the matching engine labels
for test 2

writetable(trainingSet, 'training_set.csv'); % Writes the remaining 80% of clean data into its
own csv for training

writetable(table(traininglLabels), 'training labels.csv'); % Writes the matching engine labels
for training

cleanedData = trainingSet; % Replace cleanedData with training set for future steps
engineTypelabels = traininglabels; 7% Replace engine labels with training labels for clustering

% Rebuild numeric matrix X for the training pipeline

numericData = cleanedData(:, vartype("numeric")); % Extract numeric columns for model training
X = table2array(numericData); % Convert numeric table into matrix for normalization and
clustering

% STEP 9 - Z-score normalization
% Z-score = (x - mu) / sigma
%

% Numeric feature names (for saving parameters later)
varNames = numericData.Properties.VariableNames; % This keeps track of which column corresponds
to which feature which allows for correct normalization

% Preallocate mean and std arrays (one per column of X)
numFeatures = size(X, 2); % Determine how many numeric features there are in total
mu = zeros(1l, numFeatures); % Stores mean for each feature column

253

254
255
256
257
258

259

260
261
262
263
264
265
266
267

268
269
270
271
272
273

274
275
276
277
278
279

280
281
282
283
284

285
286

287
288

289
290

291
292

293
294

295
296

297

sigma = ones(1l, numFeatures); % Stires standard deviation, which is initialized to all 1 to
avoid division problems

% Loop over each numeric feature/column
for ii = l:numFeatures % Loop through every numeric feature and calculate z-score parameters
col = X(:, ii); % Extract the full column for the current feature
mu(ii) = mean(col, 'omitnan'); % Calculate the mean and ignore any missing values, the
mean centers the distribution
sigma(ii) = std(col, ‘'omitnan'); % Calculate the standard deviation and ignore any
missing values, the standard deviation scales the distribution

% Avoid divide-by-zero for constant columns
if sigma(ii) ==

sigma(ii) = 1; % Prevents division by zero and preserves the feature shape
end

% Perform z-score normalization and overwrite this column with its z-scored version

X(:, ii) = (col - mu(ii)) / sigma(ii); % This transformation makes all feautres comparable
in scale, which prevents variables with a larger magnitude from having a larger influence on
clustering
end

Xnorm = X; % Final normalized feature matrix stored separately

% Save normalization parameters for future use on test sets
1 1

save('normParams_loop.mat', 'mu', 'sigma', 'varNames'); % Save mu and sigma so test sets could
use identical scaling

F A e e L LT
% STEP 10 - Weight Assigning

numFeatures = size(Xnorm,2); % Count how many normalized features exist

weights = ones(1,numFeatures); % Initialize all feature weights to 1 to have a neutral
influence

numericNames = numericData.Properties.VariableNames; % Retreieve feature names used to apply
targeted weights

for ii = l:numFeatures % Loop through all of the features
lname = lower(numericNames{ii}); % Convert all feature names to lowercase for reliable
substring matching
if contains(lname,"rate") && contains(lname,"climb") % Rate of climb strongly separates
turbine vs piston aircraft
weights(ii) = 9.9;
elseif contains(lname,"service") && contains(lname,"ceiling") % Service ceiling is engine
power dependant, so jets highly dominate this region
weights(ii) = 4.5;
elseif contains(lname, "max") && contains(lname,"speed") % Max speed cleanly separates jets
from others, propjets fall in between here
weights(ii) = 2.5;
elseif contains(lname,"cruise") || contains(lname,"rcmnd") % Cruise speed correlates with
propjet vs piston crossover
weights(ii) = 4.5;
elseif contains(lname, "takeoff") % Takeoff distance reflects the thrust to weight and
engine response
weights(ii) = 4.0;
elseif contains(lname,"landing") % Landing distance is somewhat correlated but is largely
influences by the drag and flaps used in landing
weights(ii) = 3.5;
elseif contains(lname, "weight") % Gross/ empty weight is a reflection of aircraft category
and engine capability
weights(ii) = 4.5;

298

299
300

301
302

303
304

305
306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321

322
323
324
325
326
327
328
329

330
331
332
333
334

335

336

337
338

339

340
341
342
343
344
345
346

elseif contains(lname,"stall") % Stall speed provides some insight into engine categories
but is not so decisive
weights(ii) = 1.5;
elseif contains(lname,"fuel™) % Fuel capacity varies widely but isn't very string at
categorizing engine types
weights(ii) = 1.5;
elseif contains(lname,"range") % Range is influence by a large magnitude of factors, engine
type itself isn't very predictive alone
weights(ii) = 1.0;
elseif contains(lname,"length") || contains(lname,"height") || contains(lname,"wing") % The
dimensions of the aircraft have some dependancy on engine type
weights(ii) = 0.5;
else % Any remaining features that havent been accounted for get a neutral default weight
weights(ii) = 1.0;
end
end

Xweighted = Xnorm .* weights; % Apply the weights by scaling each feature column

Y e e LT
% STEP 11 - K-means clustering

k = 3; % 3 clusters for the 3 engine types: Jet, Piston, Propjet
rng(l); % Fixing random seed ensures reproducible clustering results and doesn't rerandomize
centroids

[idx, C] = kmeans(Xweighted, k,... % Perform k-means on the weighted, normalized feature set
'Replicates’, 25,... % Run the algorithm 25 times to avoid a bad local minima
'MaxIter', 1000,... % Allow up to 1000 iterations for convergence per replicate

'Display’, 'final'); % MATLAB prints summary including best within cluster sum of squared
errors
Y A R e e T
% STEP 12 - Majority Voting Cluster Assignments
engineTypes = ["Jet","Piston","Propjet"]; % Target categories for classifications
clusterToType = strings(k,1); % Preallocate mapping array

for i1 = 1:k
members = engineTypelabels(idx==ii); % Extract engine types that appear inside the given
cluster
if isempty(members) % If a cluster ended up empty
clusterToType(ii) = "UNKNOWN"; % Label it as UNKNOWN
continue;
end
numJet = sum(members=="Jet"); % Count the number of each jet engine class in a given
cluster
numPiston = sum(members=="Piston"); % Count the number of each piston engine class in a
given cluster
numPropjet = sum(members=="Propjet"); % Count the number of each propjet engine class in a
given cluster
% This applies a majority voting rule for classifications of clusters
if numPropjet >= max(numJet,numPiston)*@.63 % If propjets are atleast 63% of the dominant
class, classify as propjet
clusterToType(ii) = "Propjet"; % Propjets have been seemingly the most difficult to
separate, so its boosted to improve the mapping of it later on
elseif numlet >= numPiston % If jets dominate more than pistons
clusterToType(ii) = "Jet"; % Assign the cluster type as jet
else
clusterToType(ii) = "Piston"; % Otherwise, assign the cluster as piston
end
end

347
348
349
350
351
352
353
354
355
356
357

358
359
360

361
362

363
364

365
366
367
368
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

386

387
388
389
390
391
392
393

394
395
396
397
398

disp("Cluster Labels:");
disp(clusterToType); % This displays the reuslting cluster classification labels

A R et i T
% STEP 13 - Confusion Matrix

predictedTrain = clusterToType(idx); % Convert cluster numbers back into engine type predictions

% Convert to categorical
engineTypes = ["Jet","Piston","Propjet"]; % Define category order for a consistent result
orderCats = categorical(engineTypes, engineTypes); % Force categorical ordering in confusion

matrix

trueCat = categorical(engineTypelabels, engineTypes); % Convert true labels to categorical type
predCat = categorical(predictedTrain, engineTypes); % Convert predicted labels into the same
categorical type

confMat = confusionmat(trueCat, predCat, 'Order', orderCats); % Compute the confusion matrix
using consistent labeling order

confTable = array2table(confMat, 'VariableNames', cellstr(engineTypes), 'RowNames',
cellstr(engineTypes)); % Convert the confusion matrix to a readable table

disp("Training Confusion Matrix:");
disp(confTable); % Print the full confusion matrix

acc = sum(predCat == trueCat) / numel(trueCat); % Compute the fraction of correctly predicted
aircraft (predicted / true)
fprintf("Training Accuracy: %.2f%%\n", acc * 100); % Display the accuracy of predicted / true

A e T T
% STEP 14 - Visualization (Max Speed vs Climb Rate vs Gross Weight)

maxSpeed = cleanedData.("Max speed Knots"); % Use max speed as x-axis feature for visualization
roc = cleanedData.("All eng rate of climb"); % Use rate of climb as y-axis feature

gross = cleanedData.("Gross weight 1bs"); % Use gross weight as z-axis feature

clusterCat = categorical(idx); % Convert the cluster IDs into categorical values for coloring

figure; hold on; grid on; % Start a new scatter plot with the grid enabled for visual clarity
markers = {'o',"'s',"~"}; % Marker shapes corresponding to each true engine type

for ii = 1l:numel(engineTypes)

mask = (trueCat == engineTypes(ii)); % Filter the rows belonging to the true class ii
scatter3(maxSpeed(mask), roc(mask), gross(mask), ... % Scatter plot showing cluster

coloring but true shaped markers

40, clusterCat(mask), markers{ii}, 'filled', 'MarkerkEdgeColor', 'k', 'LineWidth', ©.4); %
Filled markers with an outer edge to improve visibility on the clustered and overlapped markers
end

xlabel("Max Speed (knots)"); % Label x-axis for interpretabilty

ylabel("Rate of Climb (all engines)"); % Label y-axis

zlabel("Gross Weight (1lbs)"); % Label z-axis

title("K-means Cluster Visualization"); % Plot title describing the purpose of the plot
legend("Jet","Piston","Propjet"); % Includes a legend representing true engine types via the
marker shapes

colormap(lines); % Use MATLAB's built in parula colormap for good color contrast
view(3); % 3D perspective in MATLAB

rotate3d on; % Allows for drag and rotate of plot

hold off; % Finish the plot

% This type of visualization of the clustering makes it clear to see where there are
misclassifications

399 % The color shows what k-means thinks the plane is (predicted)
400 % The marker shape shows what the plane really is
401

x10*
14

12 -

)
© o
[/

Gross Weight (Ibs
(#)]
/

Rate of Climb (all engines)

2000

K-means Cluster Visualization

300

200

Max Speed (knots)

@ Jet
m Piston
A Propjet

600

Command Window

Cluster Labels:
"Propjet”
il]E‘t) |
"Piston”

Training Confusion Matrix:

Jet Piston Propjet

Jet 65 @ 21
Piston 8 372 51
Propjet 5 a8 6l

Trailning Accuracy: 86.16%
>

