
%% --------MATLAB Final Project - Engine Type Clustering --------%%1
%                        By: Ori Algave 2
% 3
% This script loads aircraft performance data, cleans it, converts4
% ft/in columns to numeric feet, standardizes engine labels, 5
% partitions data into Test Set 1, Test Set 2, and Training Set,6
% normalizes features, applies weights, runs K-means clustering,7
% maps clusters to engine types, and evaluates results.8
%-----------------------------------------------------------------%9
clc; clear; close all;  % Clear command window, workspace variables, and open figures10
%% ---------------------------------------------------------------11
%  STEP 1 - Load the raw data12
% ---------------------------------------------------------------13
filename = 'bluebook.csv';  % Name of input CSV file containing aircraft data14
rawData = readtable(filename, 'VariableNamingRule','preserve');  % Read CSV as a table, then 15
preserve original column headers
cleanedData = rawData;  % Make a working copy for cleaning so rawData stays unchanged16

17
%% ---------------------------------------------------------------18
%  STEP 2 - Remove rows with too many missing values (5+)19
% ---------------------------------------------------------------20
keepRow = true(height(cleanedData),1);  % Logical vector indicating which rows to keep (start 21
with all true)
for ii = 1:height(cleanedData)  % Loop through each row of entire table22
    numMissing = sum(ismissing(cleanedData(ii,:)));  % Count missing entries in current row 23
using ismissing
    if  numMissing > 5  % If more than 5 cells are missing in this row 24
        keepRow(ii) = false;  % Mark the current row as false so it will be removed25
    end26
end27
cleanedData = cleanedData(keepRow,:);  % Keep only rows marked true, drop rows with too many NaNs28

29
%% ---------------------------------------------------------------30
%  STEP 3 - Remove columns with >10% missing31
% ---------------------------------------------------------------32
numRows = height(cleanedData);  % Store number of remaining rows after row cleaning33
keepCol = true(1, width(cleanedData));  % Logical vector for keeping or dropping columns34

35
for jj = 1:width(cleanedData)  % Loop through each column of the table 36
    numMissingCol = sum(ismissing(cleanedData(:,jj)));  % Count how many entries in this column 37
are missing
    if  numMissingCol > 0.10*numRows  % If more than 10% of entries are missing38
        keepCol(jj) = false;  % Mark this column as false to be removed39
    end40
end41

42
cleanedData = cleanedData(:, keepCol);  % Keep only columns with acceptable levels of missing 43
data  

44
% Delete column with 'Height' because it has months and isn't useful for data45
colsToDelete = ["Height ft/in"];46
for ii = colsToDelete47
     if ismember(ii, cleanedData.Properties.VariableNames)48
         cleanedData.(ii) = [];49
     end50
end51

52
%% ---------------------------------------------------------------53
%  STEP 4 - Standardize Engine Type Labels54
% ---------------------------------------------------------------55



engineTypeRaw = cleanedData.("Engine Type");  %Extract original engine type column from cleaned 56
table
engineStr = string(engineTypeRaw);  % Convert to string array for easier text operations57
engineStr = strtrim(lower(engineStr));  % Convert to lowercase and trim surrounding whitespace58

59
engineTypeLabels = strings(size(engineStr));  % Preallocate array for standardized engine labels60

61
for ii = 1:numel(engineStr)  % Loop through each original engine type string62
    et = engineStr(ii);  % Shorter variable name for current engine string63
    if contains(et,"jet") && ~contains(et,"prop")  % If contains 'jet' but not 'prop', treat it 64
as pure jet
        engineTypeLabels(ii) = "Jet";  % Standardized label: Jet65
    elseif contains(et,"prop")  % If contains 'prop', treat as a turboprop / propjet66
        engineTypeLabels(ii) = "Propjet";  % Standardized label Propjet67
    elseif contains(et,"pist")  %If matches 'pist' (piston variants / misspellings)68
        engineTypeLabels(ii) = "Piston";  % Standardized label: Piston69
    else70
        engineTypeLabels(ii) = "UNKNOWN";  % Anything not matching the above categorizations is 71
unknown, mark as  UNKNOWN so it could be removed later 
    end72
end73

74
cleanedData.EngineTypeStandardized = engineTypeLabels;  % Attach standardized engine labels as a 75
column in table

76
%% ---------------------------------------------------------------77
%  STEP 5 - Remove UNKNOWN engine types before clustering78
% ---------------------------------------------------------------79
unknownMask = (engineTypeLabels == "UNKNOWN");  % Logical mask where standardized label equals 80
UNKNOWN
cleanedData(unknownMask,:) = [];  % Remove UNKNOWN rows from cleaned data81
engineTypeLabels(unknownMask) = []; % Remove corresponding labels to keep alignment82

83
%% ---------------------------------------------------------------84
%  STEP 6 - Convert ft/in columns 85
% ---------------------------------------------------------------86

87
% ---------- LENGTH ----------88
if ismember("Length ft/in", cleanedData.Properties.VariableNames)  % Check if Length ft/in 89
string column exists
    rawLength = cleanedData.("Length ft/in");  % Original name has a space, so set it equal to a 90
variable
    lengthFeet = zeros(height(cleanedData), 1);  % Preallocate numeric vector for length in feet91
    92
    for ii = 1:height(cleanedData)  % Loop through each row to comvert length 93
        value = rawLength{ii};  % Extract raw ft/in string from table cell94
        95
        if contains(value, "/")  % If string has '/', assume its 'feet / inches' format96
            parts = split(value, "/");  % split function splits the string into substring parts 97
around '/'
            98
            if numel(parts) == 2  % If there are exactly 2 parts, feet and inches99
                feet   = str2double(parts{1});  % str2double converts feet substring to numeric 100
value 
                inches = str2double(parts{2});  % Convert inches substring to numeric value 101
            else102
                feet   = str2double(parts{1});  % If more unusual format but still uses '/' then 103
first part is feet 
                inches = 0;  % Defaults inches to zero 104
            end105
        else106



            feet   = str2double(value);  % If there is no '/', treat entire value as feet only 107
and convert full string directly to numeric feet
            inches = 0;  % No inches in this case 108
        end109
        110
        totalInches = feet*12 + inches;      % Convert combination of feet and inches into total 111
inches 
        lengthFeet(ii) = totalInches / 12;   % Convert inches back to feet 112
    end113
    114
    cleanedData.LengthFeet = lengthFeet;  % Store numeric length in new column LengthFeet115
    cleanedData.("Length ft/in") = [];   % Remove original string based length column 116
end117

118
119

% ---------- WINGSPAN ----------120
if ismember("Wing span ft/in", cleanedData.Properties.VariableNames)  % Check if Wing span ft/in 121
string column exists
    rawWing = cleanedData.("Wing span ft/in");  % Original name has a space, so set it equal to 122
a variable
    wingspanFeet = zeros(height(cleanedData), 1);   % Preallocate numeric vector for wingspan in 123
feet
    124
    for ii = 1:height(cleanedData)  % Loop through each row for wingspan conversion 125
        value = rawWing{ii};  % Extract raw wingspan ft/in string 126
        127
       if contains(value, "/")  % If string has '/', assume its 'feet / inches' format128
            parts = split(value, "/");  % split function splits the string into substring parts 129
arounf '/'
            130
            if numel(parts) == 2  % If there are exactly 2 parts, feet and inches131
                feet   = str2double(parts{1});  % str2double converts feet substring to numeric 132
value 
                inches = str2double(parts{2});  % Convert inches substring to numeric value 133
            else134
                feet   = str2double(parts{1});  % If more unusual format but still uses '/' then 135
first part is feet 
                inches = 0;  % Defaults inches to zero 136
            end137
        else138
            feet   = str2double(value);  % If there is no '/', treat entire value as feet only 139
and convert full string directly to numeric feet
            inches = 0;  % No inches in this case 140
        end141
        142
        totalInches = feet*12 + inches;      % Convert combination of feet and inches into total 143
inches 
        wingspanFeet(ii) = totalInches / 12;   % Convert inches back to feet 144
    end145
    146
    cleanedData.WingSpanFeet = wingspanFeet;  % Store numeric wingspan measures147
    cleanedData.("Wing span ft/in") = [];  % Remove original wingspan string column148
end149

150
%% ---------------------------------------------------------------151
%  STEP 7 - Build numeric matrix and impute missing values152
% ---------------------------------------------------------------153
numericData = cleanedData(:, vartype("numeric"));  % Select only numeric columns using 154
vartype("numeric")
X = table2array(numericData);  % Convert numeric table to matrix for faster numeric operations155

156



for col = 1:size(X,2)  % Loop over each feature column in X157
    colData = X(:,col);  % Extract one column as a vector158
    mu_val = mean(colData,'omitnan');  % Compute mean while ignoring NaNs (omitnan ignores 159
missing data)
    colData(isnan(colData)) = mu_val;  % Replace NaNs in this column with the column mean 160
    X(:,col) = colData;  % Put cleaned column back into X161
end162

163
disp("Remaining NaN count in X:");  % Print label indicating NaN count check164
disp(sum(isnan(X),'all'));  % Count all NaNs in X, this value should be zero after imputation165

166
% Overwrite numeric columns in cleanedData with fully imputed values (Extract names of numeric 167
variables to update table columns)
numericVars = numericData.Properties.VariableNames;  % Get variable names so they could 168
overwrite each column in loop
for col = 1:length(numericVars)  % Loop across each numeric variable column name169
    cleanedData.(numericVars{col}) = X(:,col);  % Replace original column in cleanedData with 170
fully imputed numeric column 
end171

172
%% ---------------------------------------------------------------173
%  STEP 8 - Sectioning the data set into test and training sets174
%---------------------------------------------------------------175

176
% Calculate 10% of total dataset size177
totalRows = height(cleanedData);  % Get the total number of rows in the cleaned dataset178
numToPick = round(0.10 * totalRows);  % Get the number of rows that make up 10% of the total 179
data to be extracted 

180
%---------------------------------------------------------------181
%          Create the first 10% test set182
%---------------------------------------------------------------183
test1Indices = [];  % Initialize an empty array to store indices for test set 1184
while length(test1Indices) < numToPick  % Loop until there are enough unique indices that makeup 185
less that 10%
    randomIndex = randi(totalRows);  % Randomly generate a random integer from 1 to total rows 186
    if ~ismember(randomIndex, test1Indices)  % Check if the current index has not been chosen 187
already, ismember checks if its a part of the chosen indices
        test1Indices(end+1) = randomIndex;  % If it's a new index then add after the last index 188
in the list of selected indices
    end189
end190

191
%---------------------------------------------------------------192
%           Create the second 10% test set 193
%---------------------------------------------------------------194
test2Indices = [];  % Initialize an empty array to store indices for test set 2195
while length(test2Indices) < numToPick  % Loop until there are enough unique indices that makeup 196
less that 10%
    randomIndex = randi(totalRows);  % Randomly generate a random integer from 1 to total rows 197
    if ~ismember(randomIndex, [test1Indices, test2Indices])  % Check if the current index has 198
not been chosen already from set 1 or for set 2, ismember checks if its a part of the chosen 
indices
        test2Indices(end+1) = randomIndex;  % If it's a new index then add after the last index 199
in the list of selected indices
    end200
end201

202
%---------------------------------------------------------------203
%            Extract test sets using selected indices204
%---------------------------------------------------------------205



testSet1 = cleanedData(test1Indices, :);  % Use the selected indices to extract the first test 206
set from the cleaned data based off of the list of random indices 
testSet2 = cleanedData(test2Indices, :);  % Use the selected indices to extract the second test 207
set from the cleaned data based off of the list of random indices 

208
% Extract engine labels for each test set209
testLabels1 = engineTypeLabels(test1Indices);  % Engine labels that match test set 1210
testLabels2 = engineTypeLabels(test2Indices);  % Engine labels that match test set 2211

212
%---------------------------------------------------------------213
%             Build the training set (remaining 80%)214
%---------------------------------------------------------------215
remainingIndices = setdiff(1:totalRows, [test1Indices test2Indices]);  % Find all indices not 216
selected into test sets
trainingSet = cleanedData(remainingIndices, :);  % Use remaining indices to create the training 217
set 
trainingLabels = engineTypeLabels(remainingIndices);  % Use same remaining indices to extract 218
training labels

219
%---------------------------------------------------------------220
%             Save all 3 sets into CSV files221
%---------------------------------------------------------------222
writetable(testSet1, 'test_set_1.csv');  % Writes the first 10% of indices into its own csv for 223
test 1
writetable(table(testLabels1), 'test_set_1_labels.csv');  % Writes the matching engine labels 224
for test 1

225
writetable(testSet2, 'test_set_2.csv');  % Writes the second 10% of indices into its own csv for 226
test 2
writetable(table(testLabels2), 'test_set_2_labels.csv');  % Writes the matching engine labels 227
for test 2

228
writetable(trainingSet, 'training_set.csv');  % Writes the remaining 80% of clean data into its 229
own csv for training 
writetable(table(trainingLabels), 'training_labels.csv');  % Writes the matching engine labels 230
for training

231
%---------------------------------------------------------------232
%  Update cleanedData and engineTypeLabels to training data only233
%---------------------------------------------------------------234
cleanedData = trainingSet;  % Replace cleanedData with training set for future steps 235
engineTypeLabels = trainingLabels;  % Replace engine labels with training labels for clustering236

237
% Rebuild numeric matrix X for the training pipeline238
numericData = cleanedData(:, vartype("numeric"));  % Extract numeric columns for model training239
X = table2array(numericData);  % Convert numeric table into matrix for normalization and 240
clustering

241
%% ---------------------------------------------------------------242
%  STEP 9 - Z-score normalization 243
%  Z-score = (x - mu) / sigma244
% ---------------------------------------------------------------245

246
% Numeric feature names (for saving parameters later)247
varNames = numericData.Properties.VariableNames;  % This keeps track of which column corresponds 248
to which feature which allows for correct normalization

249
% Preallocate mean and std arrays (one per column of X)250
numFeatures = size(X, 2);  % Determine how many numeric features there are in total 251
mu = zeros(1, numFeatures);  % Stores mean for each feature column252



sigma = ones(1, numFeatures);  % Stires standard deviation, which is initialized to all 1 to 253
avoid division problems

254
% Loop over each numeric feature/column255
for ii = 1:numFeatures  % Loop through every numeric feature and calculate z-score parameters256
    col = X(:, ii);  % Extract the full column for the current feature257
    mu(ii)    = mean(col, 'omitnan');   % Calculate the mean and ignore any missing values, the 258
mean centers the distribution 
    sigma(ii) = std(col,  'omitnan');   % Calculate the standard deviation and ignore any 259
missing values, the standard deviation scales the distribution 

260
    % Avoid divide-by-zero for constant columns261
    if sigma(ii) == 0262
        sigma(ii) = 1;  % Prevents division by zero and preserves the feature shape263
    end264

265
    % Perform z-score normalization and overwrite this column with its z-scored version266
    X(:, ii) = (col - mu(ii)) / sigma(ii);  % This transformation makes all feautres comparable 267
in scale, which prevents variables with a larger magnitude from having a larger influence on 
clustering
end268

269
Xnorm = X;  % Final normalized feature matrix stored separately 270

271
% Save normalization parameters for future use on test sets272
save('normParams_loop.mat', 'mu', 'sigma', 'varNames');  % Save mu and sigma so test sets could 273
use identical scaling

274
%% ---------------------------------------------------------------275
%  STEP 10 - Weight Assigning 276
% ---------------------------------------------------------------277
numFeatures = size(Xnorm,2);  % Count how many normalized features exist278
weights = ones(1,numFeatures);  % Initialize all feature weights to 1 to have a neutral 279
influence 
numericNames = numericData.Properties.VariableNames;  % Retreieve feature names used to apply 280
targeted weights

281
for ii = 1:numFeatures  % Loop through all of the features 282
    lname = lower(numericNames{ii});  % Convert all feature names to lowercase for reliable 283
substring matching 
    if contains(lname,"rate") && contains(lname,"climb")  % Rate of climb strongly separates 284
turbine vs piston aircraft
        weights(ii) = 9.0;285
    elseif contains(lname,"service") && contains(lname,"ceiling")  % Service ceiling is engine 286
power dependant, so jets highly dominate this region
        weights(ii) = 4.5;287
    elseif contains(lname,"max") && contains(lname,"speed")  % Max speed cleanly separates jets 288
from others, propjets fall in between here 
        weights(ii) = 2.5;289
    elseif contains(lname,"cruise") || contains(lname,"rcmnd")  % Cruise speed correlates with 290
propjet vs piston crossover 
        weights(ii) = 4.5;291
    elseif contains(lname,"takeoff")  % Takeoff distance reflects the thrust to weight and 292
engine response 
        weights(ii) = 4.0;293
    elseif contains(lname,"landing")  % Landing distance is somewhat correlated but is largely 294
influences by the drag and flaps used in landing
        weights(ii) = 3.5;295
    elseif contains(lname,"weight")  % Gross/ empty weight is a reflection of aircraft category 296
and engine capability
        weights(ii) = 4.5; 297



    elseif contains(lname,"stall")  % Stall speed provides some insight into engine categories 298
but is not so decisive
        weights(ii) = 1.5;299
    elseif contains(lname,"fuel")  % Fuel capacity varies widely but isn't very string at 300
categorizing engine types
        weights(ii) = 1.5;301
    elseif contains(lname,"range")  % Range is influence by a large magnitude of factors, engine 302
type itself isn't very predictive alone
        weights(ii) = 1.0;303
    elseif contains(lname,"length") || contains(lname,"height") || contains(lname,"wing")  % The 304
dimensions of the aircraft have some dependancy on engine type
        weights(ii) = 0.5; 305
    else  % Any remaining features that havent been accounted for get a neutral default weight306
        weights(ii) = 1.0;307
    end308
end309

310
Xweighted = Xnorm .* weights;  % Apply the weights by scaling each feature column 311

312
%% ---------------------------------------------------------------313
%  STEP 11 - K-means clustering314
% ---------------------------------------------------------------315
k = 3;  % 3 clusters for the 3 engine types: Jet, Piston, Propjet 316
rng(1);  % Fixing random seed ensures reproducible clustering results and doesn't rerandomize 317
centroids 
[idx, C] = kmeans(Xweighted, k,...  % Perform k-means on the weighted, normalized feature set 318
    'Replicates', 25,...  % Run the algorithm 25 times to avoid a bad local minima 319
    'MaxIter', 1000,...  % Allow up to 1000 iterations for convergence per replicate320
    'Display','final');  % MATLAB prints summary including best within cluster sum of squared 321
errors
%% ---------------------------------------------------------------322
%  STEP 12 - Majority Voting Cluster Assignments323
% ---------------------------------------------------------------324
engineTypes = ["Jet","Piston","Propjet"];  % Target categories for classifications325
clusterToType = strings(k,1);  % Preallocate mapping array 326

327
for ii = 1:k328
    members = engineTypeLabels(idx==ii);  % Extract engine types that appear inside the given 329
cluster 
    if isempty(members)  % If a cluster ended up empty330
        clusterToType(ii) = "UNKNOWN";  % Label it as UNKNOWN331
        continue;332
    end333
    numJet = sum(members=="Jet");  % Count the number of each jet engine class in a given 334
cluster 
    numPiston = sum(members=="Piston");  % Count the number of each piston engine class in a 335
given cluster
    numPropjet = sum(members=="Propjet");  % Count the number of each propjet engine class in a 336
given cluster 
    % This applies a majority voting rule for classifications of clusters 337
    if numPropjet >= max(numJet,numPiston)*0.63  % If propjets are atleast 63% of the dominant 338
class, classify as propjet
        clusterToType(ii) = "Propjet";  % Propjets have been seemingly the most difficult to 339
separate, so its boosted to improve the mapping of it later on 
    elseif numJet >= numPiston  % If jets dominate more than pistons340
        clusterToType(ii) = "Jet";  % Assign the cluster type as jet 341
    else342
        clusterToType(ii) = "Piston";  % Otherwise, assign the cluster as piston343
    end344
end345

346



disp("Cluster Labels:");347
disp(clusterToType);  % This displays the reuslting cluster classification labels 348

349
%% ---------------------------------------------------------------350
%  STEP 13 - Confusion Matrix 351
% ---------------------------------------------------------------352
predictedTrain = clusterToType(idx);  % Convert cluster numbers back into engine type predictions353

354
% Convert to categorical355
engineTypes = ["Jet","Piston","Propjet"];  % Define category order for a consistent result356
orderCats = categorical(engineTypes, engineTypes);  % Force categorical ordering in confusion 357
matrix 

358
trueCat = categorical(engineTypeLabels, engineTypes);  % Convert true labels to categorical type 359
predCat = categorical(predictedTrain, engineTypes);  % Convert predicted labels into the same 360
categorical type 

361
confMat = confusionmat(trueCat, predCat, 'Order', orderCats);  % Compute the confusion matrix 362
using consistent labeling order

363
confTable = array2table(confMat,'VariableNames', cellstr(engineTypes),'RowNames', 364
cellstr(engineTypes));  % Convert the confusion matrix to a readable table

365
disp("Training Confusion Matrix:");366
disp(confTable);  % Print the full confusion matrix 367

368
acc = sum(predCat == trueCat) / numel(trueCat);  % Compute the fraction of correctly predicted 369
aircraft (predicted / true)
fprintf("Training Accuracy: %.2f%%\n", acc * 100);  % Display the accuracy of predicted / true370

371
%% ---------------------------------------------------------------372
%  STEP 14 - Visualization (Max Speed vs Climb Rate vs Gross Weight)373
% ---------------------------------------------------------------374
maxSpeed = cleanedData.("Max speed Knots");  % Use max speed as x-axis feature for visualization375
roc = cleanedData.("All eng rate of climb");  % Use rate of climb as y-axis feature376
gross = cleanedData.("Gross weight lbs");  % Use gross weight as z-axis feature 377
clusterCat = categorical(idx);  % Convert the cluster IDs into categorical values for coloring 378

379
figure; hold on; grid on;  % Start a new scatter plot with the grid enabled for visual clarity 380
markers = {'o','s','^'};  % Marker shapes corresponding to each true engine type 381

382
for ii = 1:numel(engineTypes)383
    mask = (trueCat == engineTypes(ii));  % Filter the rows belonging to the true class ii384
    scatter3(maxSpeed(mask), roc(mask), gross(mask), ...  % Scatter plot showing cluster 385
coloring but true shaped markers 
    40, clusterCat(mask), markers{ii}, 'filled', 'MarkerEdgeColor', 'k', 'LineWidth', 0.4);  % 386
Filled markers with an outer edge to improve visibility on the clustered and overlapped markers 
end387

388
xlabel("Max Speed (knots)");  % Label x-axis for interpretabilty389
ylabel("Rate of Climb (all engines)");  % Label y-axis 390
zlabel("Gross Weight (lbs)");  % Label z-axis391
title("K-means Cluster Visualization");  % Plot title describing the purpose of the plot392
legend("Jet","Piston","Propjet");  % Includes a legend representing true engine types via the 393
marker shapes
colormap(lines);  % Use MATLAB's built in parula colormap for good color contrast394
view(3);  % 3D perspective in MATLAB395
rotate3d on;  % Allows for drag and rotate of plot 396
hold off;  % Finish the plot 397
% This type of visualization of the clustering makes it clear to see where there are 398
misclassifications



% The color shows what k-means thinks the plane is (predicted)399
% The marker shape shows what the plane really is 400

401






