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% —------- MATLAB Final Project - Engine Type Clustering -------- %%
By: Ori Algave

This script loads aircraft performance data, cleans it, converts
ft/in columns to numeric feet, standardizes engine labels,
partitions data into Test Set 1, Test Set 2, and Training Set,
normalizes features, applies weights, runs K-means clustering,
maps clusters to engine types, and evaluates results.

3% 3% 3R 3R R R 3® 3 ¥

clc; clear; close all; % Clear command window, workspace variables, and open figures
Y e e e e e e e T
% STEP 1 - Load the raw data

filename = 'bluebook.csv'; % Name of input CSV file containing aircraft data

rawData = readtable(filename, 'VariableNamingRule', 'preserve'); % Read CSV as a table, then
preserve original column headers

cleanedData = rawData; % Make a working copy for cleaning so rawData stays unchanged

A e T e T e T
% STEP 2 - Remove rows with too many missing values (5+)

keepRow = true(height(cleanedData),1); % Logical vector indicating which rows to keep (start
with all true)
for ii = 1:height(cleanedData) % Loop through each row of entire table

numMissing = sum(ismissing(cleanedData(ii,:))); % Count missing entries in current row
using ismissing

if numMissing > 5 % If more than 5 cells are missing in this row
keepRow(ii) = false; % Mark the current row as false so it will be removed
end
end
cleanedData = cleanedData(keepRow,:); % Keep only rows marked true, drop rows with too many NaNs

Y e e e T
% STEP 3 - Remove columns with >10% missing

numRows = height(cleanedData); % Store number of remaining rows after row cleaning
keepCol = true(l, width(cleanedData)); % Logical vector for keeping or dropping columns

for jj = 1l:width(cleanedData) % Loop through each column of the table
numMissingCol = sum(ismissing(cleanedData(:,jj))); % Count how many entries in this column
are missing
if numMissingCol > ©.10*numRows % If more than 10% of entries are missing
keepCol(jj) = false; % Mark this column as false to be removed
end
end

cleanedData = cleanedData(:, keepCol); % Keep only columns with acceptable levels of missing
data

% Delete column with 'Height' because it has months and isn't useful for data
colsToDelete = ["Height ft/in"];
for ii = colsToDelete

if ismember(ii, cleanedData.Properties.VariableNames)
cleanedData.(ii) = [];
end
end
Y R e T
% STEP 4 - Standardize Engine Type Labels
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engineTypeRaw = cleanedData.("Engine Type"); %Extract original engine type column from cleaned
table

engineStr = string(engineTypeRaw); % Convert to string array for easier text operations
engineStr = strtrim(lower(engineStr)); % Convert to lowercase and trim surrounding whitespace
engineTypelabels = strings(size(engineStr)); % Preallocate array for standardized engine labels

for ii = 1:numel(engineStr) % Loop through each original engine type string

et = engineStr(ii); % Shorter variable name for current engine string

if contains(et,"jet") && ~contains(et,"prop") % If contains 'jet' but not 'prop', treat it
as pure jet

engineTypelLabels(ii) = "Jet"; % Standardized label: Jet
elseif contains(et,"prop") % If contains 'prop', treat as a turboprop / propjet
engineTypelLabels(ii) = "Propjet"; % Standardized label Propjet
elseif contains(et,"pist") %If matches 'pist' (piston variants / misspellings)
engineTypelLabels(ii) = "Piston"; % Standardized label: Piston
else
engineTypelLabels(ii) = "UNKNOWN"; % Anything not matching the above categorizations is
unknown, mark as UNKNOWN so it could be removed later
end
end
cleanedData.EngineTypeStandardized = engineTypelabels; % Attach standardized engine labels as a

column in table

Y e e L E T e
% STEP 5 - Remove UNKNOWN engine types before clustering

O = m e e e e oo
unknownMask = (engineTypelLabels == "UNKNOWN"); % Logical mask where standardized label equals
UNKNOWN

cleanedData(unknownMask,:) = []; % Remove UNKNOWN rows from cleaned data

engineTypelabels(unknownMask) = []; % Remove corresponding labels to keep alignment

A e e T T
% STEP 6 - Convert ft/in columns

% ---------- LENGTH ----------
if ismember("Length ft/in", cleanedData.Properties.VariableNames) % Check if Length ft/in
string column exists

rawLength = cleanedData.("Length ft/in"); % Original name has a space, so set it equal to a
variable

lengthFeet = zeros(height(cleanedData), 1); % Preallocate numeric vector for length in feet
for ii = 1:height(cleanedData) % Loop through each row to comvert length
value = rawLength{ii}; % Extract raw ft/in string from table cell
if contains(value, "/") % If string has '/', assume its 'feet / inches' format
parts = split(value, "/"); % split function splits the string into substring parts
around '/
if numel(parts) == 2 % If there are exactly 2 parts, feet and inches
feet = str2double(parts{1}); % str2double converts feet substring to numeric
value
inches = str2double(parts{2}); % Convert inches substring to numeric value
else
feet = str2double(parts{1}); % If more unusual format but still uses '/' then
first part is feet
inches = @; % Defaults inches to zero
end
else
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feet = str2double(value); % If there is no '/', treat entire value as feet only
and convert full string directly to numeric feet
inches = @; % No inches in this case

end
totalInches = feet*12 + inches; % Convert combination of feet and inches into total
inches
lengthFeet(ii) = totalInches / 12; % Convert inches back to feet
end

cleanedData.LengthFeet = lengthFeet; % Store numeric length in new column LengthFeet
cleanedData. ("Length ft/in") = []; % Remove original string based length column
end

% ---------- WINGSPAN ----------
if ismember("Wing span ft/in", cleanedData.Properties.VariableNames) % Check if Wing span ft/in
string column exists

rawWing = cleanedData.("Wing span ft/in"); % Original name has a space, so set it equal to
a variable

wingspanFeet = zeros(height(cleanedData), 1); % Preallocate numeric vector for wingspan in
feet

for ii = 1:height(cleanedData) % Loop through each row for wingspan conversion
value = rawWing{ii}; % Extract raw wingspan ft/in string

if contains(value, "/") % If string has '/', assume its 'feet / inches' format
parts = split(value, "/"); % split function splits the string into substring parts

arounf '/'
if numel(parts) == 2 % If there are exactly 2 parts, feet and inches
feet = str2double(parts{1}); % str2double converts feet substring to numeric
value
inches = str2double(parts{2}); % Convert inches substring to numeric value
else
feet = str2double(parts{1}); % If more unusual format but still uses '/' then

first part is feet
inches = @; % Defaults inches to zero
end
else
feet = str2double(value); % If there is no '/', treat entire value as feet only
and convert full string directly to numeric feet
inches = @; % No inches in this case

end
totalInches = feet*12 + inches; % Convert combination of feet and inches into total
inches
wingspanFeet(ii) = totallInches / 12; % Convert inches back to feet
end

cleanedData.WingSpanFeet = wingspanFeet; % Store numeric wingspan measures
cleanedData. ("Wing span ft/in") = []; % Remove original wingspan string column
end

F A e e e T e
% STEP 7 - Build numeric matrix and impute missing values

numericData = cleanedData(:, vartype("numeric")); % Select only numeric columns using
vartype("numeric"
X = table2array(numericData); % Convert numeric table to matrix for faster numeric operations
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for col = 1:size(X,2) % Loop over each feature column in X
colData = X(:,col); % Extract one column as a vector
mu_val = mean(colData, 'omitnan'); % Compute mean while ignoring NaNs (omitnan ignores
missing data)
colData(isnan(colData)) = mu_val; % Replace NaNs in this column with the column mean
X(:,col) = colData; % Put cleaned column back into X
end

disp("Remaining NaN count in X:"); % Print label indicating NaN count check
disp(sum(isnan(X),'all')); % Count all NaNs in X, this value should be zero after imputation

% Overwrite numeric columns in cleanedData with fully imputed values (Extract names of numeric
variables to update table columns)
numericVars = numericData.Properties.VariableNames; % Get variable names so they could
overwrite each column in loop
for col = 1:length(numericVars) % Loop across each numeric variable column name

cleanedData. (numericVars{col}) = X(:,col); % Replace original column in cleanedData with
fully imputed numeric column
end

Y e e L E T e
% STEP 8 - Sectioning the data set into test and training sets

% Calculate 10% of total dataset size

totalRows = height(cleanedData); % Get the total number of rows in the cleaned dataset
numToPick = round(@.10 * totalRows); % Get the number of rows that make up 10% of the total
data to be extracted

testlIndices = []; % Initialize an empty array to store indices for test set 1
while length(testlIndices) < numToPick % Loop until there are enough unique indices that makeup
less that 10%

randomIndex = randi(totalRows); % Randomly generate a random integer from 1 to total rows

if ~ismember(randomIndex, testlIndices) % Check if the current index has not been chosen
already, ismember checks if its a part of the chosen indices

testlIndices(end+1l) = randomIndex; % If it's a new index then add after the last index

in the list of selected indices

end
end

test2Indices = []; % Initialize an empty array to store indices for test set 2
while length(test2Indices) < numToPick % Loop until there are enough unique indices that makeup
less that 10%

randomIndex = randi(totalRows); % Randomly generate a random integer from 1 to total rows

if ~ismember(randomIndex, [testlIndices, test2Indices]) % Check if the current index has
not been chosen already from set 1 or for set 2, ismember checks if its a part of the chosen
indices

test2Indices(end+1l) = randomIndex; % If it's a new index then add after the last index

in the list of selected indices

end
end
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testSetl = cleanedData(testlIndices, :); % Use the selected indices to extract the first test
set from the cleaned data based off of the list of random indices
testSet2 = cleanedData(test2Indices, :); % Use the selected indices to extract the second test
set from the cleaned data based off of the list of random indices

% Extract engine labels for each test set
testLabelsl = engineTypelabels(testlIndices); % Engine labels that match test set 1
testLabels2 = engineTypelabels(test2Indices); % Engine labels that match test set 2

remainingIndices = setdiff(1l:totalRows, [testlIndices test2Indices]); % Find all indices not
selected into test sets

trainingSet = cleanedData(remainingIndices, :); % Use remaining indices to create the training
set

traininglabels = engineTypelLabels(remainingIndices); % Use same remaining indices to extract
training labels

writetable(testSetl, 'test_set 1.csv'); % Writes the first 10% of indices into its own csv for
test 1

writetable(table(testLabelsl), 'test set 1 labels.csv'); % Writes the matching engine labels
for test 1

writetable(testSet2, 'test_set 2.csv'); % Writes the second 10% of indices into its own csv for
test 2

writetable(table(testLabels2), 'test set 2 labels.csv'); % Writes the matching engine labels
for test 2

writetable(trainingSet, 'training_set.csv'); % Writes the remaining 80% of clean data into its
own csv for training

writetable(table(traininglLabels), 'training labels.csv'); % Writes the matching engine labels
for training

cleanedData = trainingSet; % Replace cleanedData with training set for future steps
engineTypelabels = traininglabels; 7% Replace engine labels with training labels for clustering

% Rebuild numeric matrix X for the training pipeline

numericData = cleanedData(:, vartype("numeric")); % Extract numeric columns for model training
X = table2array(numericData); % Convert numeric table into matrix for normalization and
clustering

% STEP 9 - Z-score normalization
% Z-score = (x - mu) / sigma
%

% Numeric feature names (for saving parameters later)
varNames = numericData.Properties.VariableNames; % This keeps track of which column corresponds
to which feature which allows for correct normalization

% Preallocate mean and std arrays (one per column of X)
numFeatures = size(X, 2); % Determine how many numeric features there are in total
mu = zeros(1l, numFeatures); % Stores mean for each feature column
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sigma = ones(1l, numFeatures); % Stires standard deviation, which is initialized to all 1 to
avoid division problems

% Loop over each numeric feature/column
for ii = l:numFeatures % Loop through every numeric feature and calculate z-score parameters
col = X(:, ii); % Extract the full column for the current feature
mu(ii) = mean(col, 'omitnan'); % Calculate the mean and ignore any missing values, the
mean centers the distribution
sigma(ii) = std(col, ‘'omitnan'); % Calculate the standard deviation and ignore any
missing values, the standard deviation scales the distribution

% Avoid divide-by-zero for constant columns
if sigma(ii) ==

sigma(ii) = 1; % Prevents division by zero and preserves the feature shape
end

% Perform z-score normalization and overwrite this column with its z-scored version

X(:, ii) = (col - mu(ii)) / sigma(ii); % This transformation makes all feautres comparable
in scale, which prevents variables with a larger magnitude from having a larger influence on
clustering
end

Xnorm = X; % Final normalized feature matrix stored separately

% Save normalization parameters for future use on test sets
1 1

save('normParams_loop.mat', 'mu', 'sigma', 'varNames'); % Save mu and sigma so test sets could
use identical scaling

F A e e L LT
% STEP 10 - Weight Assigning

numFeatures = size(Xnorm,2); % Count how many normalized features exist

weights = ones(1,numFeatures); % Initialize all feature weights to 1 to have a neutral
influence

numericNames = numericData.Properties.VariableNames; % Retreieve feature names used to apply
targeted weights

for ii = l:numFeatures % Loop through all of the features
lname = lower(numericNames{ii}); % Convert all feature names to lowercase for reliable
substring matching
if contains(lname,"rate") && contains(lname,"climb") % Rate of climb strongly separates
turbine vs piston aircraft
weights(ii) = 9.9;
elseif contains(lname,"service") && contains(lname,"ceiling") % Service ceiling is engine
power dependant, so jets highly dominate this region
weights(ii) = 4.5;
elseif contains(lname, "max") && contains(lname,"speed") % Max speed cleanly separates jets
from others, propjets fall in between here
weights(ii) = 2.5;
elseif contains(lname,"cruise") || contains(lname,"rcmnd") % Cruise speed correlates with
propjet vs piston crossover
weights(ii) = 4.5;
elseif contains(lname, "takeoff") % Takeoff distance reflects the thrust to weight and
engine response
weights(ii) = 4.0;
elseif contains(lname,"landing") % Landing distance is somewhat correlated but is largely
influences by the drag and flaps used in landing
weights(ii) = 3.5;
elseif contains(lname, "weight") % Gross/ empty weight is a reflection of aircraft category
and engine capability
weights(ii) = 4.5;
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elseif contains(lname,"stall") % Stall speed provides some insight into engine categories
but is not so decisive
weights(ii) = 1.5;
elseif contains(lname,"fuel™) % Fuel capacity varies widely but isn't very string at
categorizing engine types
weights(ii) = 1.5;
elseif contains(lname,"range") % Range is influence by a large magnitude of factors, engine
type itself isn't very predictive alone
weights(ii) = 1.0;
elseif contains(lname,"length") || contains(lname,"height") || contains(lname,"wing") % The
dimensions of the aircraft have some dependancy on engine type
weights(ii) = 0.5;
else % Any remaining features that havent been accounted for get a neutral default weight
weights(ii) = 1.0;
end
end

Xweighted = Xnorm .* weights; % Apply the weights by scaling each feature column

Y e e LT
% STEP 11 - K-means clustering

k = 3; % 3 clusters for the 3 engine types: Jet, Piston, Propjet
rng(l); % Fixing random seed ensures reproducible clustering results and doesn't rerandomize
centroids

[idx, C] = kmeans(Xweighted, k,... % Perform k-means on the weighted, normalized feature set
'Replicates’, 25,... % Run the algorithm 25 times to avoid a bad local minima
'MaxIter', 1000,... % Allow up to 1000 iterations for convergence per replicate

'Display’, 'final'); % MATLAB prints summary including best within cluster sum of squared
errors
Y A R e e T
% STEP 12 - Majority Voting Cluster Assignments
engineTypes = ["Jet","Piston","Propjet"]; % Target categories for classifications
clusterToType = strings(k,1); % Preallocate mapping array

for i1 = 1:k
members = engineTypelabels(idx==ii); % Extract engine types that appear inside the given
cluster
if isempty(members) % If a cluster ended up empty
clusterToType(ii) = "UNKNOWN"; % Label it as UNKNOWN
continue;
end
numJet = sum(members=="Jet"); % Count the number of each jet engine class in a given
cluster
numPiston = sum(members=="Piston"); % Count the number of each piston engine class in a
given cluster
numPropjet = sum(members=="Propjet"); % Count the number of each propjet engine class in a
given cluster
% This applies a majority voting rule for classifications of clusters
if numPropjet >= max(numJet,numPiston)*@.63 % If propjets are atleast 63% of the dominant
class, classify as propjet
clusterToType(ii) = "Propjet"; % Propjets have been seemingly the most difficult to
separate, so its boosted to improve the mapping of it later on
elseif numlet >= numPiston % If jets dominate more than pistons
clusterToType(ii) = "Jet"; % Assign the cluster type as jet
else
clusterToType(ii) = "Piston"; % Otherwise, assign the cluster as piston
end
end
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disp("Cluster Labels:");
disp(clusterToType); % This displays the reuslting cluster classification labels

A R et i T
% STEP 13 - Confusion Matrix

predictedTrain = clusterToType(idx); % Convert cluster numbers back into engine type predictions

% Convert to categorical
engineTypes = ["Jet","Piston","Propjet"]; % Define category order for a consistent result
orderCats = categorical(engineTypes, engineTypes); % Force categorical ordering in confusion

matrix

trueCat = categorical(engineTypelabels, engineTypes); % Convert true labels to categorical type
predCat = categorical(predictedTrain, engineTypes); % Convert predicted labels into the same
categorical type

confMat = confusionmat(trueCat, predCat, 'Order', orderCats); % Compute the confusion matrix
using consistent labeling order

confTable = array2table(confMat, 'VariableNames', cellstr(engineTypes), 'RowNames',
cellstr(engineTypes)); % Convert the confusion matrix to a readable table

disp("Training Confusion Matrix:");
disp(confTable); % Print the full confusion matrix

acc = sum(predCat == trueCat) / numel(trueCat); % Compute the fraction of correctly predicted
aircraft (predicted / true)
fprintf("Training Accuracy: %.2f%%\n", acc * 100); % Display the accuracy of predicted / true

A e T T
% STEP 14 - Visualization (Max Speed vs Climb Rate vs Gross Weight)

maxSpeed = cleanedData.("Max speed Knots"); % Use max speed as x-axis feature for visualization
roc = cleanedData.("All eng rate of climb"); % Use rate of climb as y-axis feature

gross = cleanedData.("Gross weight 1bs"); % Use gross weight as z-axis feature

clusterCat = categorical(idx); % Convert the cluster IDs into categorical values for coloring

figure; hold on; grid on; % Start a new scatter plot with the grid enabled for visual clarity
markers = {'o',"'s',"~"}; % Marker shapes corresponding to each true engine type

for ii = 1l:numel(engineTypes)

mask = (trueCat == engineTypes(ii)); % Filter the rows belonging to the true class ii
scatter3(maxSpeed(mask), roc(mask), gross(mask), ... % Scatter plot showing cluster

coloring but true shaped markers

40, clusterCat(mask), markers{ii}, 'filled', 'MarkerkEdgeColor', 'k', 'LineWidth', ©.4); %
Filled markers with an outer edge to improve visibility on the clustered and overlapped markers
end

xlabel("Max Speed (knots)"); % Label x-axis for interpretabilty

ylabel("Rate of Climb (all engines)"); % Label y-axis

zlabel("Gross Weight (1lbs)"); % Label z-axis

title("K-means Cluster Visualization"); % Plot title describing the purpose of the plot
legend("Jet","Piston","Propjet"); % Includes a legend representing true engine types via the
marker shapes

colormap(lines); % Use MATLAB's built in parula colormap for good color contrast
view(3); % 3D perspective in MATLAB

rotate3d on; % Allows for drag and rotate of plot

hold off; % Finish the plot

% This type of visualization of the clustering makes it clear to see where there are
misclassifications



399 % The color shows what k-means thinks the plane is (predicted)
400 % The marker shape shows what the plane really is
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Command Window

Cluster Labels:
"Propjet”
il ]E‘t ) |
"Piston”

Training Confusion Matrix:

Jet Piston Propjet

Jet 65 @ 21
Piston 8 372 51
Propjet 5 a8 6l

Trailning Accuracy: 86.16%
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