Aircraft Performance and Economic Evaluation Report of the Airbus A320 Neo and the Boeing 737 Max 8

Prepared by: Tyler Bartell, Alex Encinosa, Nicolas Tran and Ori Algave; Project Team 19

On our honor, we have neither given nor received	l unauthorized aid in doing this examination
Tyler Bartell:	
Ori Algave:	Ori ALgave
Alex Encinosa:	<u>Alex Encinosa</u>

Nicolas Tran:

Nicolas Tran

Executive Summary

This report presents a detailed technical and economic comparison between the Airbus A320neo and Boeing 737 MAX 8. Both of these aircrafts have been in service for many years, and both possess many similarities and differences in how they function, both structurally and economically Through a utilizing computational modeling and data given to us through industry-related sources, our team assessed key aspects crucial to these planes such as aerodynamic efficiency, fuel consumption, maintenance costs, and lifecycle value. Overall, with the limited information presented to us, our analysis indicates that the Airbus A320neo consistently outdoes the Boeing 737 MAX 8 in key aspects of efficiency and economic constraints.

Although the Boeing 737 MAX 8 possesses several aspects that are superior to the Airbus aircraft, including its engine winglets, MTOW and OEW, the Airbus A320neo significantly outperforms the other aircraft due to its more optimal climb rate, fuel consumptions, lift-to-drag ratios, and thrust-to-weight ratios. Furthermore, the Airbus A320neo exhibits better annual fuel savings, maintenance savings, and residual value compared to the Boeing 737 MAX 8. The environmental impact, media standpoint, and appreciation is also better for the Airbus A320neo.

With all of this in consideration, our team highly recommends that this airliner acquires multiple Airbus A320neo's as additions to its fleet instead of the Boeing 737 MAX 8. The performance, economic, and extraneous factors all favor that of the Airbus A320neo and would better benefit the airliner in comparison to the Boeing aircraft.

Table of Contents:

- 1. Introduction
- 2. Aircraft Data Collection
- 3. Aircraft Description and technical specifications
 - 3.1 Airbus A320 Description
 - 3.2 Boeing 737 MAX 8 Description
 - 3.3 Technical Analysis of the Airbus A320neo and the Boeing 737 MAX 8
- 4. Economic Evaluation
 - 4.1 Operational Comparison
 - **4.2 Maintenance Comparison**
 - 4.3 Technical Comparison
- 5. Full Analysis
 - **5.1 Full Comparison**
 - 5.2 Limitations of Research
- 6. Recommendations
- 7. References / Sources for Quantitative Data
- 8. Appendix

List of Figures:

- Figure 1: Maximum Velocity vs. Altitude for Boeing 737 MAX 8
- Figure 2: Maximum Velocity vs. Altitude for Airbus A320neo
- Figure 3: Stall Velocity vs. Altitude of the Boeing 737 MAX 8
- Figure 4: Stall Velocity vs. Altitude of the Airbus A320neo

List of Tables

- Table A: Gathered Data regarding the Airbus A320neo and Boeing 737 MAX 8
- Table B: Aircraft economic data between the Airbus A320neo and Boeing 737 MAX 8

1. Introduction

In the last several years, Airline fleet expansion has been a strategic and important decision for airliners that are looking to enhance their dominance and profit levels. Based on the report from Mckinsley and Company, most airliners have already begun considering the replacement of old aircraft and introducing new aircraft to their fleet, which allows them to attain an edge in the market (Leblanc, 2024). Yet this vital decision must be motivated by several technical and economic factors. The suitable aircraft must be arrived at by prudent consideration of steady-state flight performance, operational efficiency, and long-term economic performance so that both the consumers are satisfied with their flight choice, and the company earns a profit from these new aircraft. As the market puts increasing value on sustainability, emissions reduction, and fuel efficiency savings, newer models such as the Airbus A320neo and Boeing 737 MAX 8 offer attractive alternatives. This report provides a comparative analysis of the two models to guide the client's fleet purchasing decisions (Scholz, 2012).

2. Aircraft Data Collection

Data for this study were gathered from manufacturer specifications, independent aerospace research publications, and industry analyses. Each resource for these calculations may be found in the references. Specific parameters such as wingspan, wing area, maximum takeoff weight (MTOW), operating empty weight (OEW), thrust-specific fuel consumption (TSFC), Oswald efficiency factor, and range were compiled through these papers. Performance modeling, including range calculations and flight envelope analysis, was conducted using web-based spreadsheets, such as Google Sheets and Microsoft Excel, and MATLAB as they allowed for organized data to be calculated and properly graphed. Economic modeling included block hour cost estimates, fuel cost modeling based on typical utilization rates, and residual value projections derived from secondary market analyses (BEA, 2020).

3. Aircraft Description and Technical Specifications

3.1 Airbus A320 Description

All technical specifications have been determined through the analysis of many different scientific articles and journals regarding these planes. All these sources can be found under the *Reference* section.

Airbus A320neo comes with the newest aerodynamic enhancements such as Sharklets (wingtip devices to reduce induced drag) and re-engineered variants with CFM LEAP-1A engines. The aircraft measures a wingspan of 117.5 ft, wing area of 1312 ft2, maximum takeoff weight (MTOW) of 149,914 lbs, and an operating empty weight (OEW) of 85,980 pounds. Its fuel capacity is approximately 23,760 L, with some Airbus Corporate Jet (ACJ) configurations of the aircraft allowing additional tanks to be installed to supply the aircraft with potential

capacities of up to 34,416 L. Its design has an Oswald efficiency factor of 0.783 and a thrust-specific fuel consumption (TSFC) of about 0.53 lb/lbf/hr.

3.2 Boeing 737 MAX 8 Description

The Boeing 737 MAX 8 introduces improvements like split-tip winglets and LEAP-1B engines. Precisely, though the LEAP-1B engine has less thrust compared to the LEAP-1A engine, the LEAP-1B engine is lighter and more streamlined (Retd, 2017). Further, the aircraft is also slightly larger with an MTOW of 181,200 pounds and an OEW of approximately 145,400 pounds, all with a wingspan of 117 feet 10 inches and a wing area close to 1270 square feet. Compared to the Airbus A320neo, the Boeing 737 MAX 8 allows for a much greater base fuel capacity at 25,941 L. The Boeing 737 MAX typically cruises at Mach 0.79, but aerodynamic efficiency is somewhat lower, with an Oswald factor of 0.627 and a TSFC of about 0.55 lb/lbf/hr. Table A displays each of these values in relation to the other:

Parameter	Airbus A320neo	Boeing 737 MAX 8
Wingspan (ft)	117.5	117 ft 10 in
Wing Area (ft²)	1312	~1270
Maximum Takeoff Weight (MTOW, lb)	149,914	181,200
Operating Empty Weight (OEW, lb)	85,980	145,400
Maximum Range (nmi)	2700	3610
Cruise Speed (Mach)	0.78	0.79
Maximum Operating Mach Number	0.82	0.82
Service Ceiling (ft)	38,700	41,000
TSFC (lb/lbf/hr)	0.53	0.55
Oswald Efficiency Factor (e)	0.783	0.627
Max Engine Thrust (lbf)	49,908	29,317

Table A: Gathered Data regarding the Airbus A320neo and Boeing 737 MAX 8

3.3 Technical Analysis of the Airbus A320neo and the Boeing 737 MAX 8

Airbus A320neo and Boeing 737 MAX 8 exhibit strong performance traits in typical mission scenarios. The A320neo, with a maximum operating altitude of 38,700 feet and

maximum operational range of approximately 2700 nautical miles, offers highly competitive cruise performance. Its climb rate is assisted by more favorable weight-to-thrust ratios, which support quicker climb to fuel-saving cruising altitudes than the MAX 8. Boeing 737 MAX 8 offers a higher operational ceiling of 41,000 feet and top range of approximately 3610 nautical miles, with additional mission flexibility in transcontinental flight but more leisurely climb rates under maximum payloads. (Maximum speeds for Boeing 737 MAX 8 and Airbus A320neo aircraft for various altitudes up to respective flight ceilings are shown below in Figure 1 and 2)

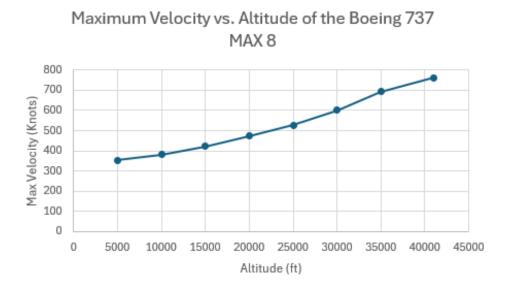


Figure 1: Maximum Velocity vs. Altitude for Boeing 737 MAX 8

Maximum Velocity vs Altitude of the Airbus A320neo

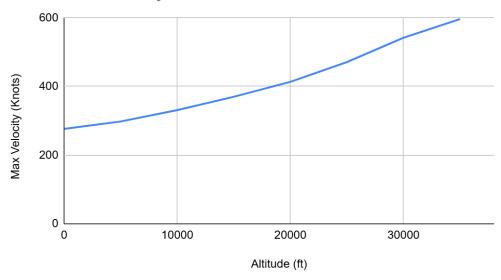


Figure 2: Maximum Velocity vs. Altitude for Airbus A320neo

Cruise fuel consumption comparisons indicate that at similar payloads, the A320neo demonstrates a 3-4% lower fuel burn per nautical mile than the 737 MAX 8. Across different altitudes, the A320neo maintains more stable lift-to-drag ratios, particularly at cruise altitudes between 33,000 and 38,000 feet. This aerodynamic efficiency enhances the aircraft's ability to sustain optimal performance during long-haul cruise flights, reducing the need for frequent throttle or altitude adjustments, improving fuel economy.

The maximum Mach speeds of both aircraft prove to be similar under optimal conditions, that being 0.82. Despite this, the A320neo exhibits a wider flight envelope in terms of aerodynamic margins, especially in high-altitude cruise and low-speed flight conditions during landing phases. This translates to smoother transitions across various phases of flight and a greater buffer against aerodynamic instabilities such as buffet onset or Mach tuck, contributing to more handling characteristics at the edges of the certified envelope.

Further, the A320neo achieves better thrust-to-weight ratios under standard operating conditions, translating to improved takeoff performance and reduced runway length requirements. The typical stall speeds are lower for the A320neo under landing configurations, which increases approach safety margins. These operating features not only enhance airport operating flexibility at the ones with short runways or severe environmental conditions but also aid in enhanced scheduling reliability and route flexibility. Thus, A320neo-operating airlines can access a greater number of airfields with higher levels of safety and operating efficiency.

Overall, the A320neo demonstrates greater operational efficiency and stability across a variety of flight phases, including takeoff, climb, cruise, and landing profiles, when compared to

the 737 MAX 8. However, the 737 MAX 8 offers significant advantages in terms of payload capacity, range, and cruise speed, making it highly effective for airlines seeking longer sector operations with higher passenger or cargo loads. (Stall speeds at varying altitudes for the Boeing 737 MAX 8 and Airbus A320neo models are shown below in Figures 3 and 4)

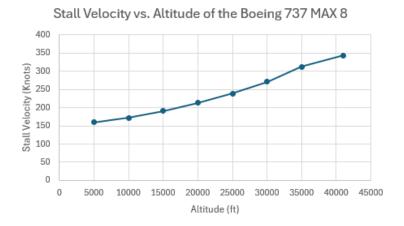


Figure 3: Stall Velocity vs. Altitude of the Boeing 737 MAX 8

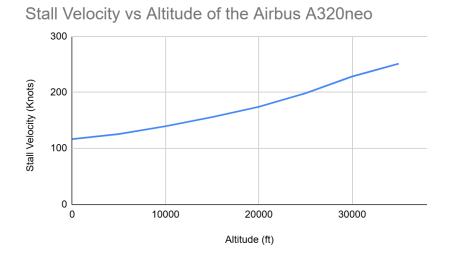


Figure 4: Stall Velocity vs. Altitude of the Airbus A320neo

4. Economic Evaluation

4.1 Operational Comparison

Economically, the Airbus A320neo demonstrates superior operational cost advantages relative to the Boeing 737 MAX 8. Assuming an annual utilization of 3000 block hours, fuel savings for the A320neo are estimated at approximately \$45,000 annually due to its better thrust-specific fuel consumption (TSFC) and optimized aerodynamic design as compared to \$9,000 in savings of annual fuel costs for each Boeing 737 MAX 8 model. Over a 15-year lifecycle, these savings aggregate to approximately \$675,000.

4.2 Maintenance Comparison

Maintenance cost savings are achieved by the A320neo through improved engine durability and longer on-wing intervals before major servicing. Estimated annual maintenance cost savings range between \$40,000 to \$50,000 per aircraft, compared to \$20,000 in maintenance savings by the 737 MAX 8. Reduced unscheduled maintenance events also increase operational availability, further boosting cost-efficiency.

4.3 Fuel Cost Comparison

Fuel cost modeling at different mission profiles highlights that for a 1000-nautical mile mission, the A320neo consumes about 2.8% less fuel per seat compared to the 737 MAX 8. On short-haul missions under 500 nautical miles, this advantage grows to nearly 4%, offering greater profitability per sector. Additionally, for long-haul flights exceeding 2000 nautical miles, while the MAX 8 maintains range advantages, the A320neo's more favorable seat-mile economics persist, especially when payload limitations are applied.

Residual value projections also favor the A320neo, with expected value retention of approximately 45% after 15 years versus about 38% for the 737 MAX 8. Combined, the operational, maintenance, and residual value advantages yield a lifecycle cost benefit of \$1.5 to \$2 million per aircraft in favor of the A320neo.

Parameter	Airbus A320neo	Boeing 737 MAX 8
Estimated Annual Fuel Savings (\$)	45,000	9,000
Estimated Maintenance Savings (\$)	40,000–50,000	20,000
Residual Value after 15 years (%)	45%	38%

Table B: Aircraft economic data between the Airbus A320neo and Boeing 737 MAX 8

(Per Aircraft)

5. Full Analysis

5.1 Full comparison

The A320neo's improved fuel efficiency, reduced maintenance costs, and greater resale value all serve to make it a longer-lasting asset to airlines. The improved aerodynamic efficiency and faster climb profiles have yielded operational benefits that translate into reduced trip times and lower fuel burns on typical routes. These cost-reducing operations provide airlines with increased scheduling flexibility and improved fleet utilization, resulting in greater overall profitability on a wide range of networks. The airplane's optimized design for short and medium haul flights makes it simple for carriers to match the capacity to evolve market demands.

Although the Boeing 737 MAX 8 has more maximum range and competitive seating density, its marginally higher operating costs and residual public perception issues following MCAS (Maneuvering Characteristics Augmentation System) redesign efforts represent moderate risks to long-term fleet value. 737 MAX 8 operators can anticipate more intense public relations, load factor pressures on certain routes, and perhaps higher insurance premiums than their A320neo competitors. Although Boeing has worked well to restore confidence, ongoing anxiety among investors and passengers may impact brand reputation and profitability. Although the MAX 8 remains a technically competitive aircraft, the reputational risk will have to be balanced against its operational benefits.

Moreover, regulatory pressure to lower emissions increasingly works in favor of the more fuel-efficient A320neo, enhancing its strategic fit within airline sustainability strategies that are unfolding. The A320neo's adaptability with sustainable aviation fuel initiatives and reduced carbon dioxide emissions per seat-mile make it a future-proof asset under tightened worldwide environmental regulations. As airlines increasingly move along with carbon offsetting programs, emissions trading regimes, and corporate environmental objectives, fleet choices that can demonstrate reductions in quantifiable emissions will increasingly become more and more to shape financial and competitive advantages. In such a scenario, the A320neo offers operators not only short-term operating efficiency but also long-term alignment with green policy trends to guarantee its value proposition in an increasingly changing industry.

5.2 Limitations of research

This analysis is based on publicly available technical data and reasonable economic assumptions. Actual performance will vary based on airline operating procedures, route networks, and evolving maintenance practices. Performance will also depend heavily on airline-specific procedures, utilization rates, and environmental conditions. In the absence of direct operating data, variations may be over- or under-estimated, thereby introducing unavoidable uncertainty into performance conclusions.

Another limitation stems from economic projections of fuel prices, maintenance labor, and secondary market conditions. These are highly volatile over time and between markets, and long-term cost projections must thus unavoidably be speculative. Lack of standardized,

transparent reporting of maintenance events and unscheduled maintenance renders exact lifecycle cost comparisons less feasible. Thus, projected economic savings need to be considered cautiously.

The analysis does not incorporate in-service degradation effects such as deteriorating engine performance, airframe fatigue, or outdated flight systems. All of these will have profound impacts on maintenance costs and operating efficiency over a ten-year service life. Without longitudinal monitoring of multiple airline operators, the complete picture of long-term operating risks remains somewhat shrouded. Future studies will need to have unrestricted access to trade-secret fleet performance data to avoid such omissions. Follow-on studies would include direct airline operations data for comparison of dispatch reliability, actual fuel burn differentials by stage length, actual maintenance costs over ten years of service, and longitudinal tracking of secondary market valuations as both fleets age beyond.

The addition of operator feedback on in-service issues, cabin performance, and retrofit program impacts would provide a clear effect of each aircraft's value. In addition, a focused study of the evolving regulatory landscape, with particular focus on emission standards and noise requirements, would provide another insight into each platform's long-term operations viability.

6. Recommendation

Avigator Consulting strongly recommends the Airbus A320neo as the ideal fleet expansion choice in view of its enhanced aerodynamic performance, guaranteed operational cost saving, lesser environmental footprint, and improved market value retention. Its new wing design, fourth-generation engine, and aerodynamic enhancements deliver real benefits in fuel efficiency and range flexibility to enable operators to attain route economics maximization under varying load factors and operating conditions. In addition, the A320neo's capability to satisfy new noise and emissions regulations enhances airport accessibility and places airlines in a good position in ever-more environmentally aware markets. All these regulatory and operational benefits combined create a compelling strategic brick for airlines to future-proof their fleets.

The operating performance, maintenance economics, and lifecycle value benefits of the A320neo pose a compelling investment case over the Boeing 737 MAX 8 for any airline that needs sustainable and cost-effective fleet growth. The A320neo's improved operational flexibility, as evidenced by a wide range of route networks and airport operations, is one of the drivers of its strategic benefit. Its solid order book and demonstrated customer satisfaction with major international carriers further signal long-term stability, minimizing the risk of ownership.

Furthermore, the aircraft demonstrated operating reliability, enhanced by a demonstrated worldwide maintenance network and decent parts support, delivers low downtime and stable long-term operating costs, key drivers of sustaining profitability and readiness in the fleet.

Looking ahead, the competitive benefits of the A320neo will increase as environmental regulations become stricter and operational efficiency increasingly a differentiator for the global air transport market. Carbon-neutral ambition, expense savings, and brand reputation airlines will discover that the A320neo is positioned to provide exceptional value in the short term as well as the long term. Based on such reasoning, Avigator Consulting believes that A320neo is the most optimal fleet investment choice for airlines looking to propel competitiveness, pre-empt future regulatory pressure, and deliver long-term value to shareholders.

7. References / Sources for Quantitative Data

- 1) BEA. (2020). *Ethiopian Airlines Flight 302 Accident Final Report*. Bureau d'Enquêtes et d'Analyses.
- 2) Leeham News. (2015). Fundamentals of Airliner Performance Part 6: Engines.
- 3) MIT Sloan. (2024). *Boeing 737 MAX 8 Disasters Report*. MIT Sloan School of Management.
- 4) Scholz, D. (2012). *OPerA Project Appendix A Airbus A320 Specifications*. Hamburg University of Applied Sciences.
- 5) LEAP-1B Powering the Boeing 737 MAX. (2017). <u>Www.sps-Aviation.com/story/?id=2164&h=LEAP-1B-Powering-the-Boeing-737-MAX</u>
- 6) Leblanc, D., Tarleton, D., & Johnston, T. (2024, July 17). What does the future hold for commercial-aviation maintenance? | McKinsey. Www.mckinsey.com. https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/what-does-the-future-hold-for-commercial-aviation-maintenance
- 7) Boeing 737 MAX 8 performance | aircraft investigation info | passenger aircraft. (2016). Aircraftinvestigation.info. https://www.aircraftinvestigation.info/airplanes/Boeing737MAX8.html
- 8) Honeywell Upgrade for Aircraft Auxiliary Power Unit Lowers Fuel Consumption and CO2 Emissions. (2023). Honeywell.com.

 https://www.honeywell.com/us/en/press/2023/06/honeywell-upgrade-for-aircraft-auxiliary-power-unit-lowers-fuel-consumption-and-co2-emissions
- 9) *Boeing 737 Specifications*. (2017, January 26). Key Aero. https://www.key.aero/article/specifications?utm-source
- 10) Leehamcoeu. (2015, January 20). *Fundamentals of airliner performance, Part 6; The engine*. Leeham News and Analysis. https://leehamnews.com/2015/01/19/fundamentals-of-airliner-performance-part-6-the-engine/
- 11) Modelling and Structural Analysis of Three-Dimensional Wing. (2019). *International Journal of Engineering and Advanced Technology*, *9*(1), 6820–6828. https://doi.org/10.35940/ijeat.a2983.109119
- 12) Airbus A320-200 CFM56 performance | aircraft investigation info | passenger aircraft. (2021). Aircraftinvestigation.info. https://www.aircraftinvestigation.info/airplanes/A320-200.html

8. Appendix

MATLAB Code to find Max/Stall Velocity of Boeing 737 MAX 8 and Airbus A320neo at Varying Altitudes

```
clc;clear;
Cdo = 0.0242;
Cl = sqrt((0.0282-Cdo)/(0.0366)); % max speed
Cl_max = 1.62;
Cl_sq = Cl^2;
Air_Den = [0.002048976752,0.00176433197,0.001428850834,0.001144788147,0.0009162185818,0.0007060820455,0.0005335876959,0.0004404523889];
v_max = [];
W = 161530;
for i= 1:length(Air_Den)
    v_max(i) = sqrt((2*W)/(Air_Den(i)*1344*Cl));
    v_{\max}(i) = v_{\max}(i)/1.688;
altitude = [5000,10000,15000,20000,25000,30000,35000,41000];
V_stall = [];
for i = 1:length(Air_Den)
    V_stall(i) = sqrt((2*W)/(Air_Den(i)*1344*Cl_max));
    V_stall(i) = V_stall(i)/1.688;
```